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Abstract

There are a number of factors a pilot must weigh when selecting routes, such as threats, fuel,

time on target, target locations, distance flown, and refueling points. This multicriteria auto-routing

problem approach is a time consuming task. This thesis presents the software engineering synthesis

of an automated software tool, based on a parallelized search algorithm, to determine mission

routes. This computational investigation studied various areas of the mission routing problem and

their impact on the execution time. In conjunction with execution time, the efficient usage of the

supercomputer system was also examined.

A centralized open list is used with one processor running the open list management program

while the rest of the supercomputer's processors run the program which performs the expansion of

part al routes. This decomposition results in a dynamically load balanced system. It is important to

match the granularity of the programs to the parallel architecture to ensure maximum utilization of

the supercomputer and to minimize execution time. This phenomenon is examined in this research.

A number of search parameters are changed to study their impact on the overall execution

time. The use of a branch and bound technique to reduce the search space and its impact on the

execution time was studied. Other parameters examined were the size of the supercomputer and

granularity of the algorithm. Each of these areas are discussed in detail as well as the applicability

to real-time processing using parallel supercomputers. Tests were run on both an iPSC/2 and an

iPSC/860 to determine the effects of the architecture upon the execution time

xii



Solution to a Multicriteria Aircraft Routing Problem

Utilizing Parallel Search Techniques

I. Problem Description

1.1 Background

Computers are entering into nearly every part of our lives, and as they do our reliance on

them is increasing. Within the Department of Defense, as well as society, computers are used for a

broad range of tasks from simple word processing to controlling sophisticated systems. The money

being spent for these systems is "growing rapidly, as more Federal agencies use computers to meet

the responsibilities given them by Congress" (49:1). Computer users expect them to provide timely

and accurate responses.

As the state-of-the-art in computer technology expands, the ability to store large amounts of

information within computers is also increasing. Computers are expected to store and manipulate

increasingly more complex information, thus users are placing greater emphasis and reliance on

the computer's capability to solve their problems. Users are straining the computer's ability to

provide timely and accurate responses. Research is being conducted into not only increasing the

computational speed of the computer, but also into techniques used for storing, retrieving, and

manipulating information. "The search for increased capability is leading to machines with multiple

processors and software capable of managing simultaneous computation in thousands of processors"

(49:28).

"Until recently pilots still planned their missions in much the same way as during World War

II - using pencils and rulers to plot courses, way points, fuel burns, and threat-evasion tactics on

paper maps" (11:35). Research has been conducted into the use of computers as aides to pilots
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performing mission planning (3)(9)(48). Some preliminary systems have been used by operational

squadrons. These systems allow pilots to plot their mission on a computer screen and have the

computer perform necessary calculations automatically, reducing the time needed for pilots to plan

a mission. The first operational test, in a combat, situation, for such systems occurred during

Operation Desert Storm and they were "one of the keys to the crushing allied victory over Iraq"

(11:35). With the viability of such systems demonstrated, the Department of Defense is paying

closer attention to the development of more sophisticated mission planning systems.

The majority of mission planning systems are interactive programs where a pilot, using the

computer, selects mission routes. A few systems are autonomous in that. the computer performs the

planning with no pilot interaction. The use of these autonomous mission routing systems, during

Operation Desert Storm, did not meet the time requirements of the operational units. Planning

of aircraft routes "involves an elaborate search through numerous possibilities" (17:126) which can

severely task the resources of the system being used to select the routes. The operational systems

could take up to 30 hours to arrive at a solution. This is not acceptable because a pilot only has a

few hours from the time the mission assignment is received to the time the mission must be flown

(3).

1.2 Problem

Mission planning consists of the selection of routes to (ingress) and from (egress) targets and

is based primarily on the ability of the pilot to complete the mission with the least probability

of detection by enemy forces. Timely identification of ingress and egress paths not only affects

the accuracy of safe routes, but also the lives of friendly forces which may be threatened by the

presence of the targets. If routes are not selected in a timely manner and the mission carried out

soon afterwards, then the information upon which the routes were based may have changed. Thus,
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what may have been a safe route at planning time may have become an extremely dangerous route

to the aircraft and its crew. This research investigates a means of timely mission planning.

Mission planning, as defined for this research, is a multicriteria routing problem based on

distanced traveled and the probability of detection by both active and passive radar. The Artificial

Intelligence and Operations Research communities, as well as others, have conducted research into

search strategies and techniques to reduce the amount of searching performed. Heuristic search is

a class of search strategies which reduces the search space by using information about the domain

problem. Two strategies within this class are the A* and dynamic programming search algorithms.

The goal for each search strategy is to reduce the time necessary to find a solution by reducing the

search space.

The A* algorithm is a specialized best-first strategy where the path which appears to lead

to the best solution is explored. This is a divide-and-conquer, top-down, approach in that the A*

approach divides the search space into smaller and smaller instances as the algorithm progresses

(10:142). The overhead associated with the A* algorithm is management of a data structure used

to store all the paths being explored.

Dynamic programming, on the other hand, is a bottom-up technique. It is based on the

principle of optimality which states that an optimal solution is composed of optimal subsolutions.

This principle is illustrated in the following shortest path example. " if k is a node on the shortest

path from i to j, then that part of the path from i to k, and that from k to j, must also be optimal"

(10:150). "Dynamic programming efficiently solves every possible subinstance in order to figure out

which are in fact relevant, and only then are these combined into an optimal solution to the original

instance" (10:144). A dynamic programming approach finds the optimal path between a start node

and any other node once the goal is found then the path leading to that goal is constructed. Tile

overhead associated with the dynamic programming approach is the data structure used to record

the connections between any two nodes in the search space.
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Research efforts are also focusing on the decomposition of search algorithms to achieve com-

putational speed-up promised by parallel processing computer systems (22). Even though heuristic

search and parallel programming have separately proven their ability to reduce the time needed to

find a solution, the times are still not within acceptable limits. This research investigates the use

of a parallel processing environment to select mission routes within an acceptable time. The A*

search algorithm, versus dynamic programming, was selected because of its ease of understanding

and implementation. Also Garmon (22) developed a parallelized A* search for the traveling sales-

men problem in support of his research, so the foundation had been laid for a parallel A* search

though the algorithms he used had to be modified to meet the requirements of the mission routing

problem.

The automated mission routers fielded have been designed for a specific aircraft, thus each

aircraft uses its own system. This research designed a general purpose mission planner using a

modular approach which would allow a user to easily change aircraft characteristics and allow ease

of maintenance of the software.

1.3 Assumptions

The process of selecting routes is a complicated process which must take into account many

variables. Due to the time constraints imposed on the thesis research and the author's limited

knowledge of operational mission planning procedures this thesis simplified the model used in the

design of a mission routing system.

There are various types of missions including intercept, air-to-ground, search and rescue, and

reconnaissance. No matter what type of mission is being flown there is a general location to which

the aircraft needs to fly. Some missions may include more than one location to which the aircraft

needs to fly, such as multiple targets and in-flight refueling points. This research was based on a

route between two points, therefore it was assumed that a mission consisted of a staging base and
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a single target. The maximum distance between the staging base and the target was less than the

combat radius of the aircraft, therefore in-flight ret•ueling was not a factor.

Selecting a mission route is simply finding the optimal path between the staging base and the

target. What makes a route optimal is not a clear principle, though it is the route which results

in the maximum likelihood of success of the mission. When planning a mission, routes are not

selected based on a single criterion, but rather on multiple criteria. For this research, tile criteria

used was based on the total distance flown and the probability of detection by enemy radar. Aircraft

configuration, fuel consumption, and aircraft speed are some variables pilots must take into account

when planning routes but was neglected in this study because of time constraints. The probability

of detection by enemy radar is based on the location of the radar, terrain, an aircraft's radar croub

section (RCS), and employed electronic counter measures (ECM). In order for this research to

remain unclassified both RCS and ECM were neglected.

The design of the mission routing system was towards a general purpose tool independent

of aircraft type. Using a modular design approach, based on software engineering techniques, the

design of the system separated the characteristics of the aircraft from the search algorithm. The

capabilities of the aircraft, such as combat radius, maximum rates of climb and dive, and minimum

turn radius, are only needed when checking the validity of moving from one location to the next,

therefore only the module used to validate aircraft movement would need to be changed to reflect

each aircraft's capabilities.

1.4 Scope

This research examines the feasibility of using a parallel processing environment in selecting

mission routes. As with any problem there are infinitely many areas which call be investigated,

but there is not enough time or resources to investigate all areas extensively. This problem is no

exception, so areas were identified in which to concentrate. Other areas are left. for future research
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(see section 6.4). This research focuses on four main areas of the mission routing problem. The

areas of concentration are:

1. representation of the threat environment,

2. decomposition of the A* search algorithm for use on a parallel processing system,

3. application of heuristics to reduce the search space and the time to find a solution, and

4. analysis of the effects of parallel computer architecture on the computational time needed to

select a route.

The goal of this research is not to design a real-time, on-board the aircraft system operating

in a dynamic environment, but to show the feasibility of a static mission routing system running

on a parallel processing system. These types of systems are being researched; however, they are

beyond the scope of this research, though the ultimate goal is such a system.

1.5 Approach and Methodology

The result of this research is the design, implementation, and evaluation ')f an automated

mission routing system utilizing a parallel processing computer.

The design centered on a parallelized A* search algorithm to find the best route. A model of

the world is first created through which the system searchs for the best route. Two elements of the

real-world are modelled: the earth's terrain, and the radar detection capabilities of an enemy. This

model provides the mission routing system with a scenario much like that faced by a pilot planning

a mission. Figure 1.1 shows an overview of the information needed by the mission routing system.

Most current mission planning systems model the aircraft's movement in two dimensions.

The systems assume the aircraft remains at a constant altitude with respect to the ground. Even

though the aircraft travels in three dimensions the systems do not model the world in true three

diroensions, thus rendering a model inconsistent, with the real world. The mission router, for this
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Figure 1.1. Overview of the Mission Routing Software

research, models the world in three dimensions. This is done by not only modelling the earth's

terrain, but by also constructing a model of the space above that terrain.

The low-level design and implementation of the parallel A* algorithm is tivided into two

parts. One part manages the list containing all the partial routes being explored, the open list,

and ascertains when the best route has been found. The second part finds all possible locations

adjacent to a given location. As each location is examined, the cost to arrive at the location and

the projected cost of going to the target, based on a heuristic, are calculated. A set of locations,

beginning at the staging base and ending at the target, constitute a route. The application of

software engineering principles aids in the design and implementation of the software. Designing

and implementing a complicated algorithm on a sequential computer can be difficult for even an

experienced person. The first step in solving the problem is to have a thorough understanding of

the problem, which is presented in Chapter I1. The design is a two phase process consisting of a

high-level and a low-level design. A design specification language and structure charts are software

engineering tools also employed to support the design of a mission routing software package. Other
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software engineering techniques such as top-down design approach, software reuse, and modularity

are also used.

Evaluation of the mission routing system is based on overall execution time and on the amount

of search space actually examined. The programs, on each processor, record timing information

along with information on the number of partial paths examined. This information is used when

making comparisons. The effect of changing each of the following parameters is investigated:

"* the heuristic used,

"* the type of parallel computer the software was run on, and

"* the number of processors used by the mission routing software.

1.6 Materials and Equipment

The Intel Corporation series of parallel supercomputers, known as the iPSC family, was the

key resource for this research. Access to both an iPSC/2 and iPSC/860 computer, each with a

minimum of 8 nodes, was obtained. These computer systems were available through the Air Force

Institute of Technology's (AFIT) parallel processing research facility and from Wright Laboratory's

Avionics Directorate's parallel computing center. A mission routing system must know the terrain

in which the mission will be flown, thus the system must be provided with a model of that terrain.

The Defense Mapping Agency (DMA) has produced digitized maps of most areas on the earth and

some of this data was available through AFIT's computer graphics research group. Routines to

access the DMA data were also available, but the time needed to incorporate these routines into

the software was greater than the time allotted for this research effort. Therefore an ASCII file

containing dummy terrain data was developed. A software package was needed to model the radar

capabilities of an enemy. The Improved Many-on-Many (IMOM) system, developed at the Air Force

Electronic Warfare Center (AFEWC), provided such modelling. Contact with the AFEWC was

made and they were able to support this research by giving access to the IMOM source code. The
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point of contact (POC) for the IMOM system agreed to provide the IMOM system, but because of

time constraints the system was not made available in time to have it incorporated for this research

effort.

1.7 Overview of the Thesis

This chapter provided a description of the mission routing problem. The scope of this research

and the approach to solving the problem were also presented.

The remainder of the thesis is composed of five chapters. Chapter II is a review of the

literature of not only the mission routing problem, but also parallel processing architectures and

search techniques. Chapter III provides a high-level design while Chapter IV provides the low-level

designs. Chapter V discusses the results and Chapter VI presents conclusions and recommendations

for future work.

1-9



H. Literature Review

2.1 Introduction

A basic understanding of parallel processing systems, search strategies, and mission routing

requirements is necessary to conduct this research effort. This chapter examines some of the research

which has been conducted in each of these fields. An overview of parallel processing, including

hardware and software, is discussed in section 2.2. Section 2.3 examines general search techniques

including a parallelized heuristic search strategy. Research into mission routing is discussed in

section 2.4 along with applicable software packages developed to aid in mission routing.

2.2 Parallel Processing

There are a number of hardware techniques in use to increase the computational speed of

computers; such as, reduced instruction set computers (RISC), instruction pipelines, vectorization

of instructions, functional units, and parallel processors.

The basic principle of parallel processing is to decompose a problem into parts and to concur-

rently execute as many of the parts as possible, thus decreasing the time needed to solve the whole

problem (23:1829) (40:24)(39:35). Designing and implementing software for a parallel processing

system is more complicated than simply taking an algorithm decomposing it into parts and running

each of the parts on a separate processor. Many considerations must be taken into account, such

as the manner in which the problem is decomposed, the interaction of each of the parts, scheduling

the execution of each part, the communication necessary between each of the processors, and the

type of architecture available.

2.2.1 Parallel Architecture. There are a number of different parallel processing environ-

ments available. The main factors which distinguish each environment are memory management,

the instruction/data network, and the type of connections between each processor.
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The two major approaches to parallel processing memory management are known as shared

and distributed memory. A shared memory approach is one in which the system has a single large

memory unit. Each processor has access to this memory and information is stored or passed through

the memory. This type of approach is subjected to contention for memory access, which can result

in performance loss (23:1829). Also, there must be a method to synchronize the execution of each

process (24:574) and resolve any memory contention problems. A distributed memory system is one

in which each processor has its own local memory, which only it can access (16:18). Information

is passed between processors using messages. This approach eliminates contention for memory,

though performance can still be degraded by message traffic (23:1829).

In 1966 Flynn created a simple model, based on the instruction/data network, which catego-

rized computers into one of four categories (20:1902):

1. Single instruction stream, single data stream (SISD)

2. Single instruction stream, multiple data streams (SIMD)

3. Multiple instruction streams, single data stream (MISD)

4. Multiple instruction streams, multiple data streams (MIMD)

These categories have become the standard by which computer systems are described. The two

most common types, in the parallel processing environment, are SIMD and MIMD. Each is briefly

described as follows (16:63-65):

"* The SIMD computer is a multiple processor system where each processor executes the same

instruction, on different data, concurrently. Each of the processors must be synchronized for

the instructions to execute concurrently.

"* The MIMD computer is also a multiple processor system, but it can execute different instruc-

tions asynchronously. Each processor can be run independently or as a group.
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Another category which is beginning to be used is single program, multiple data streams

(SPMD) (35:211). This is a cross of the SIMD and MIMD models. The SPMD model, as the name

implies, requires each processor to execute the same program, but the individual instructions need

not be synchronized.

Another attribute used to categorize parallel computers is the type of connections between

each of the processors, also referred to as nodes. Hayes and Mudge mention four types of connection

networks: (1) mesh, (2) pyramid, (3) multistage network, and (4) hypercube (23:1829). Duncan

also lists two additional types of connection networks, ring and tree (18:10). Many of the parallel

computers have been constructed using the hypercube structure (23:1829). Hayes and Mudge

describe the hypercube structure as "a generalization of the 3-dimensional cube graph to arbitrary

numbers of dimension" (23:1830). Figure 2.1 shows the structure of the hypercube architecture.

The n not. only refers to the number of processors in the hypercube, but also the number of other

processors which have a direct communication connection to any processor.

The hypercube architecture consists of a host processor, known as a systenm resource manager

(SRM), and it processors, called nodes. The SRM acts as the supervisor of the hypercube. It pro-

vides operating system functions, editing, compilation, and cube management. The host provides

the user interface to the hypercube. Each node "is a self-contained computer with a CPU, local

memory .... and an input/output (1/0) subsystem." Also each node has a set of bi-directional

I/O channels, bit-serial links with direct memory access (DMA) to the local memory, connected

to a nodes immediate neighbors. The nodes can communicate with other nodes, which aren't. in-

mediate neighbors through intermediate nodes which relay the messages to the destination node.

(23:1831-1832)

2.2.2 Parallel Softwar(. As stated previously the principle behind parallel processing is to

decompose a problem into parts and to execute as many of the parts as possible concurrently, thus

decreasing the time needed to solve the whole problem. Designing and implementing software for
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Figure 2.1. Hypercu be Interconnections

a parallel computer is more complicated than simply taking an algorithm breaking it into parts

and running each of the parts on a separate processor. Many considerations must be taken into

account., such as the manner in which the problem is decomposed into parts, the communication

between each part, the type of communication network used by the architecture, the usage of the

parallel system, and the type of architecture (i.e. SIMD, MIMD, etc.) used. Each of the areas is

discussed further in the following sections.
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2.2.2.1 Problem Decornposztzon. There are two methods, or paradigms, used when

distributing a problem across a parallel computing environment. Most problems are composed cf

two parts, the data structure and the control structure. The data structure is simply the data

associated with the problem. while the control structure is the procedures which act upon the data.

The two paradigms are domain decomposition and functional decomposition.

Domain decomposition deals with the data structure. In this approach, data is partitioned

and then each partition is distributed to each processor (35:138). Since the control structure is

unchanged, this paradigm allows a single program to be written which can be executed on any and

all nodes of the parallel computer. The disadvantage of this paradigm is there may be a need for

global communication. Preliminary results from one processor may need to be broadcast to the

other processors so they can make decisions on the usefulness of continuing processing along their

present path. Since the control structure is the same for any processor, this type of decomposition

allows the use of any type of architecture. It is still important to consider the communication

network and its impact., if any, on any communication.

Functional decomposition, also referred to as control decomposition, deals with the control

structure. As the name suggests the control structure is partitioned into functions, or tasks, and

these functions are distributed among the systems processors (35:138). This results in an approach

which is analogous to an assembly line. The data is sent to the first function which operates on the

data. The data proceeds along the assembly line stopping at each finction (8:30). By its nature,

functionally decomposed problems can not he run on SIMD or SPMD systems. By definition the

SIMID and SPMI) architectures require the same programs to be executed on each of the processors.

The difference between the SIMD and SPMD architectures is the SIMD requires synchronous exe-

cution of the same instructions while the SPMD allows asynchronous execution without, necessarily

the sane instructions being executed on each of the processors. Thus problems decomposed using

functional decomposition can not, be run on either a SIMD or a SPMD architecture.
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The domain and functional decomposition paradigms are not mutually exclusive; in other

words, the use of one decomposition method does not preclude the use of the other in some manner.

"In general, it is not always obvious which decomposition technique is best," (35:139). The software

engineer must carefully examine the problem along with the architecture to be used determine the

trade-offs and select the decomposition to be employed.

2.2.2.2 Communication. Another factor which must be taken into account when de-

signing software for parallel systems is the communication between processors. This not only refers

to the communication hardware, but also to the communication of information between processors.

Regardless of the decomposition paradigm used most implementations required some type of com-

munication whether it is passing data or for controlling the execution of processors. A designer

must be aware of the difference between communication time and processing timne (35:136) and

the limitations, or communication bandwidth, of the parallel computer. The objective of parallel

computers is to reduce the overall execution time of programs. If a software system spends more

time passing information around than processing the data then little actual work towards finding a

solution will be accomplished and the system will run very slowly. This is analogous to the operat-

ing system concept of thrashing where the system spends more time satisfying a process' requests

for memory than executing. In both cases the end result is the same, a system which runs much

slower.

The term granularity is defined as the ratio of time spent by a node coninunicating to tlhe time

spent by the same node performing computations (39:37). Granularity gives a measure by which

a designer can evaluate the software running on the parallel computer. The designer can a priori

find the communication and execution times. This is not. as simple as it may seem since different

types of instructions have different, execution times. Also there is more than one communication

time. Communication time is relative to the path between sending and receiving node and the

size of the message being sent.. The path between nodes could be meniory as in shared memory
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architectures or communication channels as in distributed memory architectures. Not only does the

type of architecture influence the communication times, but so does the hardware which handles

the trafficking of messages.

Thus, there is much to consider when designing a system to run on a parallel computing

machine. Not only does the designer need to keep the problem in mind, but also the limitations

imposed by the hardware. As Lewis wrote "it becomes very clear that one of the goals of a

parallel design is to develop a communication strategy that maximizes the time a processor spends

computing and minimizes the time it spends communicating" (35:136).

2.2.2.3 Load Balancing. The efficient use of any system is always a problem. The

usage of a computer is said to be inefficient when it is idle. This is especially true of parallel

computing systems. The maximum speed-up of a parallel computer can not be realized if some

processors are idle while others are busy processing data. This principle, for parallel processing, is

known as load balancing (8:32).

"The goal of load balancing is to keep processor nodes busy and have them finish roughly at the

same time" (35:137). If the designer knows the work load of each processor ahead of execution then

the system can be statically balanced. However, if the work load is not known then the work must

be distributed dynamically to achieve a balanced system. Static load balancing is implemented by

the programmer, while dynamic load balancing can be either implementeI by the operating system

or the designer. In either case the software engineer developing software for parallel processing

environments needs to ensure the system is properly balanced to not only ensure the software

executes correctly, but also that the system is being fully utilized. (35:137)

2.3 Search Strategies

"One of the most widely used problem solving techniques is exhaustive search, which searches

all possible answers and selects the best solution" (22:1-1). As the number of possible answers, or
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the number of possible choices, increases so too the time it takes to find a solution increases. Barr

and Feigenbaum write

The critical problem of search is the amount of time and space necessary to find a
solution. .. .Examining all sequences of n moves, for example, would require operating
in a search space in which the number of nodes grows exponentially with n. Such a
phenomenon is called a combinalorial explosion. (4:27)

In this context, nodes does not indicate the processors of a parallel computing system, but deci-

sion points in the search space. Many problems exhibit this combinatorial explosion characteristic.

Some of the problems which fall into this category include: game playing (i.e. chess) (4:99), theorem

proving (4:155)(5:313)(14:78), transformnatonal grammar parsing (4:260), synthesis of organic com-

pounds (5:134), some speech recognition algorithms (4:339), planning (14:519), and the traveling

salesmen problem (TSP) (15:960). This is just a small sampling of problems exhibiting combi-

natoric explosion, but it does the wide variety of problems with this characteristic. With a large

number of choices at each decision point and a large number of decision points, it is possible that

the computer can not find a solution within our life time, no matter how much the computational

speed of the computer is increased. When problem spaces exhibit this phenomenon, it is important

to limit the search space and not pursue paths which do not lead to a solution (46:188-189). Figure

2.2 is a representation of an exhaustive search. The triangle represents tile search space and the

shaded area is the space actually searched.

There are a number of approaches which attempt to reduce the number of nodes needing to

be examined during the search process (4:27). The results of this type of approach are reflected in

Figure 2.3, where the triangle is the search space and the shaded area the space actually searched.

The best strategy is one in which the only locations of the search space examined are those on the

solution path.
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Figure 2.2. Exhaustive Search

2.3.1 General Heuristic Search Strategy. Barr and Feigenbaum describe a method used to

reduce the search space

Several graph- and tree-searching methods have been developed, and these play an
important role in the control of problem-solving processes. Of special interest are those
graph-searching methods that use heuristic knowledge from the problem domain to help
focus the search. In some types of problems, these heuristic search techniques can
prevent a combinatorial explosion of possible solutions. ... Various theorems have been
proved about the properties of search techniques, both those that do and those that do
not use heuristic information. Briefly, it has been shown that certain types of search
methods are guaranteed to find optimal solutions (when such exist). (4:28)
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Figure 2.3. Heuristic Search

One of the most popular heuristic search strategies is the A* algorithm, a variation of the

best first search strategy. The best-first search explores those paths which seem to be the most

promising (4:59). The A in A* indicates that the heuristic employed is an additive function which

is defined as

f' = g + h' (2.1)

Rich and Knight describe g and h' as "The function g is a measure of getting from the initial state

to the current node. ... The function h' is an estimate of the additional cost of getting from the

current node to a goal state " (46:75). The * in A* indicates the solution returned by the algorithm
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is the optimal solution, based on the criteria used to calculate g and h'. This is guaranteed to be

true if the heuristic is admissible. Pearl defines a heuristic function as being admissible if

h(n) <_ h*(n) Vn (2.2)

where h*(n) is the actual cost of going from the present node to the goal node (43:77). Pearl's

notation is different than that used in this thesis. Throughout this thesis the heuristic value is

denoted by h' and the actual cost is h. To limit the search space and guarantee an answer which

is considered optimal it is necessary that h' be as close to h as possible without exceeding h. Also

when creating the h' function, the designer must consider the trade-off between the time saved by

reducing the search space and the time needed to calculate h'. If not careful it is possible that an

h' is calculated which greatly reduces the search space, even goes straight to the optimal solution,

but which takes a great amount of time to calculate. In this case a simpler h' could actually cause

the search time to be reduced.

The outline for the basic A* algorithm is (46:76):

1. Start with the OPEN list containing only the initial node

2. If the OPEN list is empty, then exit algorithm and report failure

3. Remove path with the lowest f' from the OPEN list and place it on the Closed list

4. If this path is a solution, then exit and report the path

5. Generate all successor nodes

6. Find f', g, and h'

7. If successor node is on OPEN or CLOSED lists place the node in the path which yields the

lowest g
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8. If successor node is not on either the OPEN or CLOSED lists, then put it on the OPEN list

and add it to the path

9. Return to step 2

Rich and Knight (46:74-75) describe the OPEN and CLOSED lists as:

"* The OPEN list contains nodes which have been generated and f' found, but which have not

been examined yet.

"* The CLOSED list contains nodes which have already been examined.

2.3.2 Parallelized Heuristic Search Strategy. Within the framework of parallel processing,

there are other techniques which can be applied to the A* search algorithm to further reduce the

search space. Garmon incorporated a branch and bound strategy within his implementation of the

A* algorithm to further reduce the search space.

The logical decomposition method for a search strategy is data decomposition. Thus each

processor executes the same program, but operates on different data. As discussed previously, the

nature of parallel processing requires communication between processors. Thus, the basic serial

A* algorithm must be modified to incorporate communication. For this type of problem and

decomposition, at a minimum the path with the best cost "to date" (f'), including the best cost of

the solution needs to be communicated between processors. This information can be used by each

processor to bound its search space. A search along a path whose cost exceeds the best cost can

be terminated. Thus, the parallel A* algorithm must constantly check to see if new solutions have

been found by other processors.

An implementation question which arises about the A* algorithm, in a parallel processing

environment, is the open list. Garmon and others have looked at two methods to solve this prob-

lem, having either a centralized or distributed open list (1, 7, 19, 22, 47). In the centralized

list implementation a single processor, or master, has the open list. The master assigned jobs
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to "worker" processors by sending messages which contain the information needed to perform the

search. Whenever a processor needs more work it simply communicates with the manager processor.

The disadvantage of this method is the manager processor can become a communication bottleneck

(1:1496)(7:105). Since all the processors in the system are communicating to a single processor, the

manager processor could get inundated handling all the requests, thus slowing down the system.

This method could solve the problem of load balancing, as long as the manager processor could

handle all the requests for work in a timely manner

The distributed list approach assigns each processor part of the problem, including the open

list. In order to keep all processors busy (balanced loads), if a processor completes its processing

then it simply broadcasts a request for more work. To limit the communication traffic this request

would be sent to the processor's neighbors. If a neighbor had extra work it would share some

of the work with the requesting processor. The advantage of this method is the elimination of

a communication bottleneck at a single node and the distribution of memory and resource usage

(1:1496). Each node is communicating with its neighbors for work instead of a single processor.

The question that arises is "When does a processor share work?" It is possible that the system will

begin to spend more time sharing work than processing the data, this is analogous to the operating

system's thrashing principle. This may occur if processors have little work left and they share work.

In this situation, the processor finishes its processing and then requests work from a processor to

which it just sent work. Quickly, each processor can spend more time trying to share work than

processing. This results in an inefficient system. (22)

Garmon found that for systems using small number of processors the centralized list imple-

mentation performed better than the distributed list implementation. As the number of processors

increased the distributed list implementation began to perform better. This is logical since the cen-

tralized list implementation suffers from a potential communication bottleneck and as the number

of processors increases the probability of a communication bottleneck occurring increases. (22:6-22)
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2.4 Mission Routing

A sortie consists not only of flying to and from a target, but much more. Some of the other

activities which take place are targets are selected and prioritized, weapon systems are selected to

engage the targets, and plans for engagement are developed.

A selection of ingress and egress routes is based primarily on the ability of the pilot to perform

the mission with the least probability of detection by enemy forces (i.e., maximum probability of

accomplishing the mission); or in other words, the susceptibility, vulnerability, and survivability of

the aircraft within the threat environment are the prime factors when evaluating mission routes

(29:12). Figure 2.4 is an example of what a pilot is faced with when having to select routes. Timely

identification of ingress and egress paths not only effects the accuracy of the routes, but also the

lives of friendly forces which may be threatened by the presence of the targets. If routes are not

selected in a timely manner and the mission carried out soon afterward, then the information upon

which the routes were based may have changed. Thus, what may have been a safe route at planning

time may now have become an extremely dangerous route to the aircraft and its crew.

Selecting a route can be viewed as simply finding the optimal, or shortest, path between the

starting point and the target. The problem of finding the optimal ingress and egress paths can be

reduced to the problem of performing a search within the domain of the threat environment. This

holds true for the restriction that a mission will be flown to a single target. If a mission is to have

multiple targets and other required locations, such as refueling points, then the problem is similar

to a traveling salesman problem (TSP). In this case the optimal route between locations can be

found then the optimal combination (i.e., overall route) would need to be determined using a TSP

approach.

What makes a route, or even a path, optimal has not, been precisely defined. Optimality is

based on the maximum likelihood of success of the mission. When planning a mission, routes are

not selected based on a single criterion, but rather on multiple criteria.
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Figure 2.4. Example of a Mission

2.4.1 iKepresenlation of the Environment. One of the first problems encountered when de-

signing any software which attempts to model the actual world is how to represent the world. As

Mitchell writes, "The algorithm one uses to find shortest paths among obstacles depends on the

representation used on the map" (37:174).

The "grid model", as the name implies, is based on a 2-dimensional matrix. Each location

in the matrix corresponds to ah~ actual location on the earth's surface. The value entered into the

matrix is the elevation at the specified location. This is referred to as digitizing the terrain. The

Defense Mapping Agency (DMA) uses this method to generate maps stored on computers.

Resolution refers to the surface area corresponding to a matrix entry. The greater the reso-

lution (higher or finer resolution) the smaller the surface area represented by a matrix entry. The

higher the resolution the greater the detail reflected in the digitized map, but also the greater the

amount of space needed for the data. A side effect of resolution is the accuracy of the terrain eleva-
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tion. As the resolution is decreased, the single elevation value must represent a greater area. The

calculation of the elevation value introduces errors into the value used. There is a trade-off between

the amount of space used and the amount of detail in the data. It is obvious that increasing the

resolution results in a combinatoric explosion of the search space. Another problem with this model

is known as digitized bias. Because the world has been digitized so too are the directions of traveled.

Movement, using a digitized map, is limited to a finite set of directions. There are 4 or 8 directions

for a 2-dimensional representation and 12 or 24 directions for a 3-dimensional representation. As

the resolution of the terrain map is increased the digitized biasing effects decrease. (37:176,183)

"Representing terrain in the form of a regular grid of pixels is natural and simple" (37:182).

There are many algorithms which can easily be adapted to search such a representation such as A*

or dynamic programming.

2.4.2 Calculaion of Enemy Radar Field of View. Since the main purpose of mission plan-

ning is the avoidance of detection by the enemy, it is necessary to model the coverage of the enemy's

defenses. The Air Force Electronic Warfare Center developed a Electronic Combat (EC) software

package known as the Improved Many-On-Many (IMOM).

The purpose of IMOM, as stated in the Users Manual, is to

"* -Provide the battle management staff with integrated EC deployment information for better

planning in the support and protection of combat crews and aircraft" (2:1-2).

"* Assist in the planning of combat missions by calculating the EC environment through which

an aircraft may fly (2:1-3).

"* "Enhance situation awareness of the EC threat environment" (2:1-3).

"• Provide a tool which allows a user to perform "what if" analysis (2:1-3).

IMOM uses digitized maps provided by the Defense Mapping Agency (DMA) (29:3). The user

then enters, either manually or in a file, the locations and types of enemy radar. IMOM uses such
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parameters as radar detection limits antenna beam limit analysis to characterize the capabilities

of a radar site. The software calculates the areas of radar coverage based on "terrain-limited,

line-of-sight analyses", the capabilities of the radar site, and the radar cross section (RCS) and

jamming capabilities of the aircraft (2:1-2)(48:2-5). The limitation of the IMOM system is that is

only calculates the field of coverage for a single altitude, either above ground level (AGL) or mean

sea level (MSL) (2:5-25). Thus to represent the 3-dimensional field of coverage the IMOM system

must be run for each altitude desired.

Isensee modelled the radar coverage as threat cells with a probability of detection assigned

to each cell (29:36-37). He used a matrix, having the same resolution as the DMA terrain data, to

represent the field of coverage for the enemy radar network.

2.4.3 Planning. "Until recently pilots still planned their missions in much the same way

as during World War II - using pencils and rulers to plot courses, way points, fuel burns, and

threat-evasion tactics on paper maps" (11:35). Each of the armed services is directing research

into automated mission planning systems. The details of each system are not available because

of either security or proprietary reasons. Research has been conducted at the Air Force Institute

of Technology (AFIT) into mission planning aides and these efforts are discussed in the following

sections.

2.4.3.1 Tactical Mission Planner (TMP). Maj Bahnij, an Air Force fighter pilot, de-

veloped a tool to aid pilots in the formation of mission routes. lie built his system using the LISP

language and the Knowledge Engineering Environment (KEE) software development system. His

prototype system, developed for an F-16, move(] the paper and pencil onto a computer. The pilot

could identify the configuration of the aircraft; this information was used to calculate fuel usage.

A topographical map was displayed and using a mouse the pilot could identify legs and turn-points

for the mission route. The system would automatically calculate location of the turn-point (longi-

tude/latitude), distance traveled, and fuel consumption. This not only reduced the time needed to
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formulate the mission route, but also eliminated much of the( "*drudgery" work performed by pilots

during this phase of mission planning. This allowed the pilot to concentrate more oln tile mission

itself, providing better situational awareness. (3)

A follow-on effort to the work of Maj Bahnij was conducted by Lt Bradshaw. He incorporated

the Intelligence Analysis Expert System (IAES) thus providing a radar coverage overlay on the

topographic map. This allowed the pilot to plan a route more intelligently. He also modified the

user interfaces to make the TMP more user friendly. One such change was giving the pilot to

change a leg any time during tile planning, thus allowing a pilot to explore different opti)ns. The

system also prepared the flight card for the pilot. (9)

2.4.3.2 TMP Automated Route Selection. Capt Spear performed further research on

mission planning aides using the TMP. Hlis work entailed interfacing the TMP with the IMOM

system and adding an automated route selection search. He did not directly interface the TMP

with IMOM. The TMP was written in LISP and resided oil a Symbolics 3600 LISP computer while

the IMOM system was written in FORTRAN and resided on a DEC VAX. Spear developed a

procedure to capture the IMOM results, convert, the results usable by the TMP, and transfer the

data to the Symbolics machine. Spear's main effort was the addition of a search routine to find the

"optimal" mission route. Optimality was based on total distance flown and the total probability

of detection by enemy radar. The user could specify a weighting factor for each value, where

the summation of the weighting factors equaled one. An A* algorithm was used to perform the

search. Spear used a simple, but admissible h', where t' is calculated as the straight line distance

between the present location and the goal location plus the I)rol)ability of radar detection at the

next location along the straight line. lie not only calculate(d h' but also checked on the feasibility

of a path being examined. As a node was expanded the total distance travelled plus the straight

line distance between the present node and the goal location was compared to tile combat radius

2-18



of the aircraft. If the distance was greater than the combat radius then the search along the path

in question was discontinued. This was a heuristic used to bound the search space. (48)

2.4.3.3 Mlulticriteria Network Routing. In 1991, CPT Isensee performed work similar

to that of Spear though not using the TMP system. Unlike the work of Bahnij, Bradshaw, and

Spear, Isensee looked at finding the "optimal" route when engaging more than one target. His

research effort was based on the principle of optimality, which states that an optimal solution is

a combination of optimal sub-solutions (10:143-144). Thus he found the optimal routes between

the starting point and each target, and between each of the targets. Then he had to find the

combination of sul)-routes which resulted in the overall best route which is simply a traveling

salesman problem. He used IMOM to calculate the enemy radar coverage, then using a variation

of Dijkstra's algorithm he search for each of the optimal sub-routes. Route selection was based on

three factors: (1) distance traveled, (2) probability of detection by active radar, and (3) probability

of detection by passive radar (29:30). Isensee entered the sub-routes into a software package known

as ADBASE which calculated the overall best route. Using the linear programming approach of

the ADBASE system, he looked at not only finding the optimal route, but. also the combination of

the criteria for selecting a route.

2.5 Summary

The concept of parallel computers has been around since the 1960s, but it is only recently that

it has become a major research effort. It is not a trivial task to either modify software designed

for a serial computer or to design new systems for parallel processing. A designer has much to

consider when developing software for parallel computer systems. Some of the things which need

to be considered are, how to decompose the problem, the communication between each part, and

the type of architecture on which the software will run.
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Search is not, only an integral part of the Al and Operations Research communities, but also

other disciplines. We as humans perform search all the time as we try to remember things by

retrieving information from our brains. Research has been conducted, and still is, into efficient

search techniques though there are standard strategies such as depth-first search (DFS), breadth-

first search (BFS), and A*.

Pilots have become saturated with the information and responsibilities of planning missions.

Research is being conducted into the development of automated tools. These tools will help to

reduce the work load of pilots and allow the pilot to concentrate more on the mission itself, thus

providing better situational awareness.

The design, both high-level and low-level, of a parallelized mission routing software package

is presented in the next two chapters. The design addresses the concerns identified in this chapter

and builds upon the results of the research described in this chapter.
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III. Requirements and High-Level Design

3.1 Introduction

This chapter presents the methodology used in this research and a high-level design of the

parallelized A* algorithm used to solve the mission routing problem. Before the design of the

software can begin a thorough understanding of the problem is necessary, thus section 3.2 is a

detailed description of the mission routing problem and its requirements. The methodology used in

designing the parallelized A* search is discussed in section 3.3 and the high-level design is discussed

in section 3.4. Lastly, the tasks identified for this effort are prioritized in section 3.5.

3.2 Understanding the Mission Routing Problem

3.2.1 Detailed Description. Chapter I discussed the mission routing problem in general

terms and Chapter II discussed the current state of research into solving the mission routing

problem. This section discusses, in detail, the mission routing problem as set forth for this research

effort and the requirements established.

As stated previously, mission routing consists of the selection of a route to a target and is

based primarily on the ability of the pilot to complete the mission with the greatest probability

of success. The process of selecting routes is a complicated process which must take into account

many variables, thus a selection using multiple criteria. The configuration of the aircraft, fuel

consumption, time to reach the target, time on target, aircraft speed, areas of enemy threats,

detection by the enemy, and weather are many of the variables pilots must take into account when

planning routes. The question which arises is which variables are most important and how are

each of the variables weighed against the others. What mental process does a pilot go through

when selecting mission routes. Is that the best method and how can that process, or the best one,

be modelled on a computer? These are the type of questions a knowledge engineer or a software
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engineer poses and attempts to answer when designing any type of system which models human

thought process.

3.2.1.1 Mission Parameters. The Air Tasking Order (ATO) is generated by higher

headquarters and sent to to the wing level flying units. This starts the mission planning process.

The ATO assigns all the units, under command of the higher headquarters, specific missions for

that day. A Fragmentary Order (FRAG) is a subset of the ATO and is the mission assigned to a

single unit. The ATO contains such information as:

"* target identification and location,

* when the target needs to be attacked (time on target),

"* type and number of aircraft to attack the target,

"* aircraft weapons configuration, and

"* support aircraft (i.e. AWACS, tankers, escorts, electronic jammers, etc).

This information on Air Tasking Orders was taken from the thesis written by Bahnij (3:11-4).

3.2.1.2 Representation of the World. More information is needed before the pilot can

begin selecting mission routes. The pilot must know the terrain over which the aircraft will be

flown. This is not only to avoid flying into obstacles, but also to select landmarks to aid in the

navigation of the aircraft during flight. Pilots use some type of map when planning missions, but

when terrain information is stored in a computer questions ensue as to how to represent the earth's

terrain and the format used to store this information. The two main methods of representing terrain

information are using a grid and using polygons. The grid (31, 30, 38, 37, 42) and the polygon

(36, 41, 37) terrain representations have each been used in researching path planning systems.

"Representing terrain in the form of a regular grid of pixels is natural and simple" (37:182).

A two dimensional matrix is used to represent, the terrain. Information about the terrain at each
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grid point (pixel) is collected and stored. This is the form used by the Defense Mapping Agency

(DMA) for its digital terrain database (31:578)(38:172)(37:182-183). The information stored for

each grid location consists of (38:173):

"* Elevation

"• Surface Material (i.e. water, soil, trees, etc.)

"* Mobility Factor

"* Structural Features (i.e. roads, bridges, dams, etc.)

Not all of this information is needed by a pilot though it could be helpful in identifying landmarks

both during planning and flight.

A major advantage of the grid method is that it "is compatible with advanced navigation

aids such as LORAN and GPS, which can give the position of a vehicle in longitude and latitude"

(30:135). Thus the information from the aircraft sensors could be used in conjunction with the

terrain data and selected route to navigate the aircraft. Another advantage is the ease of imposing

threats onto the map (30:135).

As the resolution of the terrain data increases so does the number of points in the route. The

increase in resolution causes the search space to increase resulting in a combinatoric explosion. The

number of possible routes of a given length is defined as

Number of possible routes, = nt (3.1)

where 1 is the length of a path and n is the maximum number of possible children locations from

any given parent location. If the resolution were increased by 100% then the dimensions of the

matrix doubled. This would mean that the length of a route between the same locations would

now be 21 resulting in

Number of possible routes, = n21 (3.2)
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It is evident that increasing the resolution of the terrain data does not result in a linear increase

in the search space, but rather an exponential increase in the search space. This is one of the

reasons this research is being conducted, to reduce the impact combinatoric explosion has on the

time necessary to find a route.

Another area of concern with a grid representation is that of digitized bias. Because the

world has been digitized so too are the directions of traveled. Movement, using a digitized map, is

limited to a finite set of directions. There are 4 or 8 directions for a 2-dimensional representation

and 12 or 24 directions for a 3-dimensional representation. As the resolution of the terrain map is

increased the digitized biasing effects decrease (37:176,183). Another phenomenon of digitized bias

is that of path and distance between two points. Because of digitization a straight line may not be

able to be drawn between two points. This is depicted in Figure 3.1 taken from Mitchell (38:174).

As can be seen in the figure, the path between points A and B is not a straight line. The cost of

traveling from point A to point B is 7.6569 units while the straight line distance is 7.2111 units.

Another side-effect of digitization is that there is more than one path with the same cost.

As mentioned the other method of representing terrain information is through the use of

polygons. Obstacles are described are polygons in terms of their boundary representations. "Ob-

stacles are given as a list of k simple polygons, each represented by a doubly linked list of vertices

(each vertex just being a pair of coordinates, either integer or real)" (37:173). Figure 3.2 is an

example of a polygonal representation of terrain data. This type of representation is easier for a

human to visualize obstacles and possible routes. An advantage of this type of encoding is that it

can save on storage costs since not all points need to be specified, just the "corner points" of the

polygons. Also the problem of digital bias has been eliminated, since straight lines between points

can be specified. Fhe drawback is that the accuracy of the terrain representation is reduced. Since

polygons are used to approximate the terrain the actual terrain features along a polygonal edge are

not exact, which could be a problem.
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Figure 3.1. Digitized Bias

Both techniques have advantages and disadvantages. Each characteristic must be weighed

when selecting which method will be used to model the terrain.

The final bit of information needed before the selection of mission routes can begin is the

intelligence data. In order to avoid detection by the enemy the pilot must know where the enemy's

radars and other means of detection are located. Not only is a knowledge of their locations im-

portant but so is a knowledge of their ability to detect and their field-of-coverage. Pilots receive

briefings on information gathered for intelligence sources and an analysis of all known threats.

This information is used by the pilot when selecting mission routes. Software packages have been

developed to model radar coverage which aid in the determination of threat analysis and aircraft

detection. The Improved Many-On-Many (IMOM) system developed for the Air Force Electronic

Warfare Center provides such a capability (2). The IMOM system can take into account such pa-

rameters as type of radar system, terrain effects on the radar's signal, electronic countermeasures

(ECM), radar cross section (RCS). The IMOM system uses the DMA digital terrain database, a
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Figure 3.2. Terrain Representation Using Polygons

database containing parameters of known enemy radar, and a database of known ECM and RCS

information. Thus the IMOM system also models the real-world using a grid representation.

3.2.1.3 Search. The heart of the mission routing problem is the selection of the best

route which entails a search. There are a number of different search strategies available. Some of

these strategies are discussed in the following paragraphs.

The uninformed, or "brute force," search method simply explores all routes until a solution is

found. The two main variations of this type of search strategy are the "depth-first search" (DFS)

and the "breadth-first search" (BFS).

The depth-first search, as its name implies, explores a single route at a time from beginning

to end before exploring another route or in other words the algorithm gives priority "to nodes at

deeper levels of the search graph. (43:36)" The algorithm begins at the starting location and selects

an edge leading to a next location. This new location becomes the present location and the process
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of selecting edges and moving to the next location associated with the edge continues until the goal

location is reached or until a location has no edges, known as a leaf node, is encountered (15:477).

With "backtracking," once a solution is found or a leaf node is reached the algorithm returns to

the previous location and continues searching along another edge (10:171). This search strategy is

depicted in Figure 3.3, where the number at each node in the search graph represents the order

in which the node is explored. The depth-first search strategy can be implemented using a stack

(43:37).

The breadth-first search algorithm "is one of the simplest algorithms for searching a graph and

the archetype for many important graph algorithms " (15:469). Dijkstra's shortest path algorithm

and Prim's minimum spanning tree algorithm are based on a breadth-first search strategy (15:469).

The breadth-first search strategy looks at all paths at the same time. While the DFS approach

gives higher priority to nodes at lower levels in the search graph, the BFS approach "assigns a

higher priority to nodes at the shallower levels of the search graph, progressively exploring sections

of that graph in layers of equal depth" (43:42). Thus it explores all nodes which are at the same

depth of the search graph before moving to the next depth. Beginning at the starting location all

the next locations are found. Then, at each of these locations, each of the next locations is found.

This continues until the goal is found or there are no more nodes to be explored. The breadth-first

search strategy can be implemented using a first-in-first-out (FIFO) queue (43:42)(10:182-183).

Figure 3.4 depicts a breadth-first search for the same search space as that in Figure 3.3. Again the

numbers at each node indicate the order in which the node was examined. Each algorithm simply

finds a solution not necessarily the best solution. To find the best solution an exhaustive search

would need to be conducted. These unguided search strategies can be inefficient in these cases;

therefore, "several techniques have been developed to guide the search and improve its average

efficiency " (1:1492). One of these techniques is known as the branch and bound strategy. To

keep from performing an exhaustive search the search space can be bounded by storing the "cost."

of the found solution. Then as each new node in the search graph is explored a determination
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Figure 3.3. Example of a Depth First Search Strategy

is made whether continuing searching from that node will result in a solution of greater cost. If

the cost at the node is equal to or greater than a known solution then exploration at that node

is discontinued. The purpose of the branch and bound strategy is "to prune certain branches of a

tree or to close certain paths in a graph" (10:199). Whenever the cost of a route being explored

exceeds that of the best solution found thus far the search of that route is discontinued and the

algorithm backtracks and continues searching along another route. This is seen in Figure 3.5 where

searching is discontinued along some paths when the cost of reaching a node has exceeded the cost

of a known best solution.

Another type of class of search strategies is that of heuristic search. Just as the branch and

bound approach tries to reduce the search space so to does a heuristic search. The A* search

algorithm is a member of the class of heuristic search. It, uses a projected cost, the heuristic, added
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Figure 3.4. Example of a Breadth First Search Strategy

to the cost of reaching a node in the search graph. This additive function is given by

I'= g + hl (3.3)

where g is the cost to reach the node and h' is the projected cost of arriving at the goal state. The

A* algorithm is a specialized best-first strategy where the path which appears to lead to the best

solution is explored. This is a divide-and-conquer, top-down, approach in that the A* approach

divides the search space into smaller and smaller instances as the algorithm progresses (10:142).

As discussed in the previous chapter the algorithm is guaranteed to give the optimal solution (the

meaning of the *) as long as h' is admissible, where admissible is defined as

h' < hactuai .(3.4)
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Figure 3.5. Example of a Depth First, Branch and Bound, Search Strategy

If h' is not admissible then the solution may or may not be the optimal. The overhead associated

with the A* algorithm is management of a data structure used to store all the paths being explored.

Dynamic programming, on the other hand, is a bottom-up technique. It is based on the principle

of optimality which states that an optimal solution is composed of partial solutions which are

themselves optimal. This principle is illustrated in the following shortest path example, "if k is

a node on the shortest path from i to j, then that part of the path from i to k, and that from

k to j, must also be optimal" (10:150). "Dynamic programming efficiently solves every possible

subinstance in order to figure out which are in fact relevant, and only then are these combined into

an optimal solution to the original instance" (10:144). A dynamic programming approach finds the

optimal path between a start node and any other node once the goal is found then the path leading

to that goal is constructed. This is true as long as the principle of optimality holds true; otherwise,

as with the A* strategy, there is no guarantee that, the solution will be the optimal solution. The
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overhead associated with the dynamic programming approach is the data structure used to record

the connections between any two nodes in the search space.

3.2.1.4 Reporting of Solution. The whole goal of the mission routing process is to

select the route which maximizes the success of the assigned mission. Any system, manual or

automated, must be able to present the selected route to a pilot, in such a manner such that

the pilot is able to navigate the aircraft to the target. A simple list of latitudes/longitudes is one

means, but this reduces the pilot's situational awareness. The pilot needs to be aware of landmarks,

obstacles, and threats in order to properly navigate and plan for contingencies. A graphical display

including the selected route and calculated radar coverage overlaid on the terrain map helps to

increase the pilot's situational awareness, but also the pilot's confidence in the system selecting the

route.

3.2.2 Requirements. From the discussion in the previous section, the requirements for a

system which solves the mission routing problem can be extracted. The primary requirements

found in the detailed description of the problem are contained in the following list.

"* Model the terrain over which the aircraft flies

"* Model the enemy's detection capabilities

"* Select the best route for the mission

"* Develop a user interface for the entering of data and the display of the selected route

Each of the primary requirements can be further delineated into secondary, or supporting,

requirements. Some of the secondary requirements identified from the primary requirements are

contained in the following lists. Modelling of the enemy's detection capabilities is further refined

to include:

* Model radar characteristics
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"* Model terrain effects on the radar signal

"* Model electronic jamming

"* Model radar cross section (RCS)

"* Model other methods of detection (i.e. troops on the ground)

One of the primary requirements is the selection of the best route. As mentioned this is the

heart of any software system used to solve the mission routing problem. There are a number of

considerations associated with this requirement and some of these are contained in the following

list.

"* Criteria used in the decision of the best route

"* Weighing of each of the criterion in the decision process

"* Method used to reduce the search space

"* Type of search algorithm used

"* Selection of both the ingress and egress routes

3.3 Design Methodology

The use of software engineering principles is an essential element in the design of any software

algorithm. Designing and implementing a complicated algorithm on a sequential computer can be

difficult for even an experienced person. As discussed in Chapter I1 the intricacies and complexities

of parallel processing makes this task even more difficult. The concept behind software engineering is

to provide a designer with tools and procedures to reduce the time necessary to develop, implement,

and maintain a software system. (44:xix-xx)

3.3.1 Software Engineering Principles. For any task the first, step in solving the problem

is to have a thorough understanding of the problem, which was presented in Chapter II and the
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previous section. This is the basis for using any of the other software engineering tools available.

Only after the problem is understood and the requirements defined can the development process

continue. Until the groundwork has been laid any other endeavors could lbe a waste of time an(l

effort.. This is the basis for the "waterfall" software development model. The assumption is made

that each stage of the development cycle is fully understood and complete(d before moving on to the

next stage. This is not always a realistic assumption. Other models, such as "rapid prototyping"

and "spiral", assume that during the development process changes will occur or new insights will

be obtained. These models provide a means for returning to any previous stage with the new

information. Thus the basic premise of these alternative models is that change will occur and that

this change is not necessarily bad. A form of rapid l)rototyping is employed during this research

effort, because of the initial lack of problem understanding. The rapid prototyping model provides

meais to adjust, the requirements and scope of the research as a clearer understanding of the

problem and its associated complexity is developed and as problems are encountered during the

implementation and testing of the software.

The development of a software package for this research utilizes a top down design approach.

This is evident in the structure of not only this chapter, but the overall thesis with a chapter

dedicated to the high-level design of the research effort, and another chapter to the low-level design.

This approach, as alre:tdy mentioned, helps to reduce the I ure necessary to conduct the low-level

design and implementation of the algorithm used to solve the mission routing problem.

A design specification language, structure charts, arid pseudo-code are software engineering

tools also employed to support. the design of a mission routing software package. The design

splecificat-ion language being used is UNITY, which is discussed in the next section. It. helps to

(lefinc ihe high-level search requirements. Structure chalias help iii the reline meut. of the hi gh-level

(lesign aiid lhe inii)lementation of the algorithim. They also give a pictorial representation of the,

inil)lemiented software aiding in the ulnderstanding and iiainternance of the software. Pseudo-code is
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used to given a structured english description of the algorithm. Another software engineering tool

used is that of modularity. "The concept of modularity in computer software has been espoused for

almost four decades. . . . software is divided into separately named and addressable elements, called

modules, that are integrated to satisfy problem requirements" (44:222). Large computer programs

which do not utilize modularity cannot be easily understood by others. This is because of the

number of control paths, variables, and overall complexity (44:222). Thus, modularity increases

the ability of others to understand a program, but this is not all. As part of the top down design

approach it allows the designer to specify needs functions and procedures without having to specify

how that function or procedure is to be implemented. This leads to another advantage of modularity

which is the easy of testing and debugging software. Modularity permits the isolation of code which

can reduce the time needed to verify the correctness of the code. This is not only important for

software designed for a serial computer architecture, but also extremely important for software

designed for parallel architectures.

Existing software is used as much as possible to help reduce development and testing time,

though the existing software must be integrated into this research endeavor. The purpose of this

research is not to model radar characteristics, but to use that information in the selection of routes.

Software packages, such as the IMOM system, have already been designed, implemented. and

testing which perform that function. Routines already exist which read in data from the DMA

digitized terrain database dnd which perform the management functions of the open list queue.

There is no reason why the wheel needs to be re-invented when one has knowledge and access to

the wheel. This is the purpose for libraries of software routines. Also the focus of present research

efforts in software engineering is in the development of reusable software packages.

3.3.2 UNITY. Chandy and Misra introduced "a computational model and proof system"

known as UNITY (Unbounded Nondeterministic Iterative Transformations) (12). UNITY is not

a programming language though it is a way to view to operation of a program. UNITY uses the
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Backus-Naur format (BNF) notation which is based on first-order predicate logic (12:22). UNITY

programs

consist of a declaration of variables, a specification of their initial values, and a set of
multiple-assignment statements. A program execution starts from any state satisfying
the initial condition and goes on forever; in each step of execution some assignment
statement is selected non-deterministically and executed. Non-deterministic selection
is constrained by the following "fairness" rule: Every statement is selected infinitely
often. (12:9)

Thus a UNITY program lists all the variables with their initial conditions. Then an assignment

statement is selected and executed. The fairness rule ensures that all assignment statements will

get the opportunity to be executed. Chandy and Misra continue the description of the UNITY

notation.

A UNITY program describes what should be done in the sense that is specifies the initial
state and the state transformations (i.e., the assignments). A UNITY program does not
specify precisely when an assignment should be executed - the only restriction is a rather
weak fairness constraint: Every assignment is executed infinitely often. Neither does
a UNITY program specify where (i.e., on which processor in a multiprocessor system)
an assignment is to be executed, nor .... Also, a UNITY program does not specify
how assignments are to be executed or how an implementation may halt a program
execution.

UNITY separates concerns between what on the one hand, and when, where, and how
on the other. The what is specified in a program, whereas the when, where, and how
are specified in a mapping. (12:9)

UNITY provides a means to describe an algorithm in an abstract, manner and at the same

time exploit the algorithm's parallelism. It also provides a means of formally proving the correct-

ness of a design. This is an important concept which helps to identify and correct errors before

implementation and testing (13:47). Identifying and correcting errors early saves both time and

resources (25:368). The operation and termination of a UNITY design is proven through the use of

predicate logic. It "provides temporal logic constructs to prove stability and fixed-point behavioral

properties of computer programs" (33:3). This method of algorithm description and verification
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helps to reduce the time necessary to design and implement an algorithm on a parallel processing

architecture.

3.4 High-Level Design

3.4.1 English Description. The problem encounter when selecting routes for missions is

finding the route which possesses the highest probability of success. There are a number of pa-

rameters which figure into the determination of which route is the best. The focus of this research

is that of the search strategy, and supporting parallel architecture, used to select the best route.

Other components of the software package are needed to provide the information through which

the search shall be conducted. Figure 3.6 shows the overview of the software which will be used to

find the best route for a mission.
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Figure 3.6. Overview of the Entire Mission Routing Package

The heart of the search of the best mission route is the A* search algorithm. The A* algorithni

is a search strategy which attempts to explore the route which appears to result in the overall best
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solution. Starting with the beginning location all valid "children," or next locations, are found

and each one produces a new route which may need to be examined further. As each new route is

found it is placed into the open list. The open list is a priority queue sorted on the projected cost

of the routes. The route at the head of the queue has the lowest projected cost and thus appears

to give the best solution. It is this route at the head of the open list which is removed and has its

children found. This process of removing routes, finding children, and placing new routes back into

the open list continues until the route at the head of the open list is a solution. Thus as solutions

are found they are simply inserted into the open list ensuring that, the best route is found. The

parallelism of examining routes and finding valid children will be exploited and this is shown in the

UNITY description of the A* search algorithm of the next section.

3.4.2 UNITY Description. Before presenting the UNITY description it is first necessary to

explain the UNITY notation. The following is an explanation of the UNITY notation (32:2)(7:7-8).

( ) Scope of a statement

I Statements may be executed concurrently

fl Statements must be executed consecutively, though the fairness rule still applies

The following is the UNITY description for the high-level design of the A* algorithm.

Program A * Search

declare
{Start, Best Vertex, Best Path, Child, and Goal)
S, BV, BP, C, G : vertices
path array[1..N] of vertices
open array[l..M] of paths

always
{The OPEN list is sorted in ascending order based on f values}
( II Vi, Vj : (0 < i < N) A (0 < j < N) A (i < j) f(open[i]) f(open[j]))

{The vertex v is always within the search space }
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(v E Search Space )

{The Best Path is always at the head of the Open list }
{and the Best Vertex is the last vertex visited in BP }

( BP = open[l])
( BV = BP(end) )

initially
{Only the Start vertex is initially on the OPEN list}
path = {S}
open = path
found = FALSE

assign
(IIVv : v = child(BV):: open := (BP A v ) if found = FALSE)

S( found := TRUE if BV = G)

end A * Search

3.4.3 Formal Proof of UNITY Description Correctness. As mentioned UNITY provides a

means to formally prove the correctness of a UNITY description. This section proves the correctness

of the A* algorithm description of the previous section.

3.4.4 Fixed Point Exists A simple examination of the UNITY descriptions reveals the fixed

point condition. The assignments

BP := OPEN(head)

OPEN := (BP A v)

are made only if found = FALSE, thus as long as found = FALSE then assignments are made and

a fixed point is not reached. When found = TRUE then the assignments are not made and the

system does not change states; therefore, the fixed point is reached. The last assignment statement

of the UNITY descriptions is

found := TRUE
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and it is made when Parent(BP) = Goal. When the path at the front of the OPEN list has the

goal as the final location, the best path has been found and the fixed point condition is satisfied.

Thus, the fixed point condition is found = TRUE (the best path has been found).

Another way to show the solution of the fixed point (FP) condition follows:

FP - [BP = OPEN(head) V - (found = FALSE)] A

[OPEN (BP A v) V -'(found FALSE)] A

[found TRUE V -, (Parent(BP) = Goal)]

Solving these logic statements it is found that the fixed point occurs when Parent(BP) = Goal

resulting in the assignment found = TRUE being made.

3.4.5 Fixed Point Reachable Now that we know the fixed point the next step is to show

that it will be reached. A simple way to prove the fixed point is reachable is to establish a metric

(mn) and then use the induction principle for leads-to (12:72). The principle is

(Vm:rnEW::pA(U=m)= - (pA(M -m))Vq) (35)

In proving the fixed point is reachable we let p = true and q = the fixed point (FP) which results

in

(Vin : m E W :: true A (M = rn) - (true A (M -< m)) V FP) (3.6)
true ý- FP

We can reduce this equation to

(V1 : rn E 1V :: (M = m) - (M -< m) V FP) (37)

true I-, FP

We need only show that (M = m) '-* (M -. m) to prove the fixed point is reachable.
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As the metric for the A* search we use the value h (not h'). As the search progresses the

paths leading to the goal state are explored. Since h is the true value of traveling from the present

location to the goal state it is obvious that this value should be decreasing as the search progress.

Thus, as assignments are made in the UNITY description the paths should be getting closer to the

goal state and h will be decreasing. Thus, (M = h) i-f (M -< h) if assignments are being made and

therefore the fixed point is reachable.

3.4.6 Mapping Schema. The read-only schema is used to map the parallelized A* search

algorithm to the architecture being used. The read-only schema stipulates that each variable in a

program can be modified by at most one processor (12:85). Each variable, in the UNITY description,

is found only once on the left side of an assignment statement. Also, since the right side of ,ach

assignment statement names a single variable modified by another assignment statement this is

an fine-grained read-only schema. In mapping this description to the architecture the following

properties hold true:

"* the Best Path variable appears on the left side of an equation only on the controller processor,

while on the worker processors it appears only as an input parameter, or in other words only

on the right side of an equation.

"* the boolean variable FOUND also appears on the left side of an equation only on the controller

processor and on the right side for the worker processors.

Thus the criteria of the read-only schema holds true and no changes are necessary when mapping

the UNITY design to a particular architecture.

3.4.7 Pseudo-Code. A combination of functional and data decomposition are used to de-

compose the problem and map the UNITY description to an architecture. The function of managing

the open list is given to one processor while the rest of the processors find valid children. The data is

decomposed by having the controller program send routes to be expanded to the worker programs.
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All message communication occurs between the controller and worker nodes, not between any of

the worker nodes. The following sections list the high-level pseudo-code for each of the processes.

3.4.7.1 Host Program. A program running on the host processor begins execution of

the search and handles all input/output (I/O) between the user and the programs running on the

parallel computer. The host program performs no work in the search process, its only function is

to act as an interface between the other programs and the user.

LOAD Programs Onto Each Node

RECEIVE the Best Route From the Controller Program

RECEIVE Processing Information

DISPLAY the Best Route

PRINT Processing Information

KILL Programs on Each Node

3.4.7.2 Controller Program. The management of the open list is performed by a con-

troller program. The controller removes routes at the front of the open list and sends them to an

idle worker processor. As expanded routes are returned they are inserted into the open list based

on their cost. This process is the assignment to the open list found in the UNITY statment

[IVv: v = child(BV) :: open := (BP A v)

from the previous section. Once the optimal route has been found

found :=TRUE if BV = G

the controller returns the solution, along with processing information to the host program. The

criteria for determining the optimal solution has been found is an implementation issue. The

processing information supports the analysis of this research effort.
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INITIALIZE the Open List Queue

PLACE the Base Node Into the Open List Queue

UNTIL Optimal Solution Found

SEND Route at Front of the Open List Queue to an Idle Processor

RECEIVE Expanded Route Messages From the Processors

INSERT Routes Into the Open List Queue

Endunt il

SEND the Solution to the Host Program

SEND Processing Information to the Host Program

3.4.7.3 Worker Program. The worker program performs the expansion of a node. It

determines the children of a given parent, where the parent is the last location in the route being

expanded. The worker determines whether a child is valid and for those that are valid g, h', and f'

are calculated. Each of these new routes are returned to the contrc!ler program for insertion into

the open list. The workers perform the following function from the UNITY description with the

assignment to the open list being made by the controller node:

IVv : v = child(BV) :: open := (BP A v)

from the previous section. This process of expanding routes continues until there is no more work to

be performed, the optimal solution has been found, at which time the workers send some processing

information to the host program. The processing information supports the analysis of this research

effort.

UNTIL No More Work

RECEIVE Route to be Expanded

CALCULATE fl, g, and h' for Each Valid Child
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SEND Expanded Routes to the Controller Program

Endunt il

SEND Processing Information to the Host Program

3.5 Tasks

Due to the time constraints imposed on the thesis research a complete and comprehensive

software package to solve the mission routing problem is not to be realized. Therefore it is necessary

to identify and prioritize the tasks associated with the development and implementation of the

software package used to solve the mission routing problem. The following table (Table 3.1) contains

all the identified tasks associated with the development of a mission routing system for this research

effort. The tasks have been prioritized with a lower number indicating a task with a higher priority.

Table 3.1. Prioritization of Research Tasks
Priority Task

1 Model terrain
1 Model detection
1 A* Search
1 Distance calculation
1 Radar detection calculation
1 Heuristics
2 Load Defense Mapping Agency (DMA) data
2 Load radar "danger map"
3 Develop a graphical user interface

3.6 Summary

This chapter presents a more detailed description of the mission routing problem than in the

previous chapters. From this detailed description a list of primary and supporting requirements is

extracted. Also discussed is the methodology used to design and develop a software package used to

select routes. With the requirements and methodology defined a description of the high-level design
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is presented. 'rhe next chapter provides the detailed design and implementation of the high-level

design described in this chapter.

3-24



IV. Low-Level Design and Implementation

4.1 Introduction

The previous chapter explains the software design methodology and high-level design of the

parallelized A* algorithm used to solve the mission routing problem. This chapter discusses the

low-level design and implementation of the parallelized A* algorithm from the previous chapter.

The low-level design is discussed in detail in section 4.2 while the implementation is discussed in

section 4.5. The data structures used in the implementation of that design are discussed in section

4.3. The heuristics used by the A* search algorithm to estimate the cost of continuing searching

along a given path are discussed in section 4.4.

4.2 Low-Level Design

4.2.1 English Description. As discussed in the Chapters II and III, the A* search strategy

explores the route which appears to result in the overall best solution based on the additive cost

function f = g + h', where g is the cost of reaching end of the route and h' is the projected cost

of reaching the goal from the end of the route (46:75). The OPEN list contains all the routes.

in ascending order of cost, which are being examined. Initially only the starting location is on

the OPEN list. The route at the head of the OPEN list has the lowest projected cost and thus

appears to give the optimal solution. For this reason it is removed from thet OPEN list and explored

further by having all the children of the parent (end location) found. These new routes are placed

on the OPEN list in order of cost. This process of removing routes, finding children, and placing

the new routes back on the OPEN list continues until the route at the head of the open list is a

solution. The A* search algorithm UNITY description in the follow section shows the parallelism

of examining routes and finding the valid children for each of these routes.

4.2.2 UNITY Description. The following is the UNITY description for the low-level design

of the A* algorithm. The high-level design can be found in the previous chapter.
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Program A * Search
declare

Start vertex {Start Location (x, y, z coordinates)}
Parent vertex {Parent Location (x, y, z coordinates)I
Child vertex {Child Location (x, y, z coordinates))
Goal vertex {Goal Location (x, y, z coordinates))
route array[1..N] of vertices {Set of vertices forming a path}
BR route {Best Route)
OPEN array[1..M] of routes {OPEN list}
found boolean {Flag Indicating if Best Solution Found}

always
{The OPEN list is sorted in ascending order using f values)
(i Vi,Vj : (0< i < M) A (0< j < M) A (i <j) :: f(OPEN[i]) < f(OPEN[j]))

(Parent = route(tail)) {Parent is the last vertex visited in a given route)

initially
0 OPEN= {S} {Only the Start node is initially in the OPEN list}
0 found = FALSE

assign
( BR := OPEN(head) if found FALSE)

[ (HVv : v Child(Parent(BR)) :: OPEN : (BR A v) if found = FALSE

0 ( found := TRUE if Parent(BR) = Goal)

end A* Search

4.2.3 Mapping Schema. A combination of functional and data decomposition is used to map

the above UNITY description to the Intel series of hypercube based parallel processing computers.

The management of the OPEN list is viewed as running on a controller node, with the other nodes

being used to find the children of a parent. Communication, during the search process, occurs only

between the controller and worker nodes, not between any of the worker nodes.

The read-only schema is used to map the parallelized A* search algorithmn to architecture.

This mapping schema stipulates that each variable in a program can be modified by at. most one

processor (12:85). Each variable, in the UNITY description, is found only once on the left side of

an assignment statement. Also, since the right side of each assignment statement names a single

variable modified by another assignment statement this is an fine-grained read-only schema. In
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mapping this to the actual implementation the following properties are evident, the best route

(BR), OPEN list insertion, and FOUND variables appear on the left side of an equation only

once. Thus the modification of each of these variables call be assigned to separate processors. The

modification of the OPEN list is assigned to the controller processor which incorporates each of

the three UNITY assignment statements. The worker processors expand a given route finding the

valid children. For each route sent to a worker all the valid children are found and each new route

is returned to the controller. Thus the worker performs the following function from the UNITY

description with the assignment being made by the controller node:

V v : v = Child(Parent(BR)) :: OPEN := (BR A v).

Each worker program is given a separate best route (BR) to expand which is a data decomposition

strategy. The controller program manages the open list, and sends routes to the worker programs

to expand. This separation of responsibilities is the characteristic of functional decomposition.

4.2.4 Pseudo-Code. If a software engineering approach were not used then the UNITY

description would be "coded up" and a "code and fix" strategy would be used to get the software

working. This is not the method stressed by software engineering principles since this can lead to

improper, non-functional, or non-maintainable software. Before the UNITY description is coded a

further functional refinement needs to take place. Pseudo-code is used to further refine and define

the functions performed by each of the programs supporting the parallelized A* search algorithm.

Also included is the pseudo-code for a sequential version of the V* search algorithm which was

developed for comparison of execution times.

4.2.4.1 Host Program. A host program is loaded onto the hypercube's system resource

manager (SRM), also known a~s the host processor. It is not derived from the UNITY description.

but, from the architecture. The host program handles all input/output (I/O) betwween the user and

the programs running on the parallel computer. The host performs no work in the search process,
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Main

Get Losd Get Display Kill
File names Programs Results Results Programs

Figure 4.1. Structure Chart for the Host Program

its only function is to act as an interface between the other programs and the user. Before execution

it is assumed that the user has allocated a cube, of any dimension, to run the software. The host

program asks the user for the file names of the files containing the terrain, radar detection, and

Air Tasking Order (ATO) data. The program then loads the controller and worker programs onto

the proper nodes of the hypercube. The file names are then sent to each node and the host waits

until a solution is returned along with processing information. Lastly, it removes the programs

from each of the nodes and releases the cube back to the system. Figure 4.1 is a structure chart

for the host program. It shows the functions performed and the dependencies between functions.

The following pseudo-code shows the low-level design of the host program.

Get cube dimension
Read in file names
Load Nodes

Load worker program on each node
Kill program on node 0
Load control program on node 0

SEND file names to each node
RECEIVE messages

RECEIVE best route from the controller
RECEIVE timing, # routes expanded, and efficiency from the controller
RECEIVE work time and # routes expanded from each worker

Calculate the average worker program efficiency
Print the best route
Print timing, efficiency, and number of routes expanded
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Kill the programs on each node
Release the cube

4.2.4.2 Conirol Program. The controller program acts as the manager of the open

list. The controller receives the file names of the files which contain the terrain, radar detection,

and Air Tasking Order (ATO) data from the host program. Only data from the ATO file is loaded

so the controller has the starting and goal information to begin and terminate the search. The

information in the other files is needed during the expansion of a node. The staging base is placed

onto the open list queue. The open list is a priority queue based on cost (f'), thus the head of

the queue contains the route with the lowest f'. As a worker program requests work the controller

programs removes the route at the front of the queue and sends it to the worker. As a worker

expands a node it returns routes which are inserted into the queue. As new best routes are found

routes on the open list with a cost greater than or equal to the cost of the new best route are deleted

from the queue. Thus, the queue only contains routes which appear to be better than the current

Manage] Return
Work Results

Get [nit Get Send Ge Gt

Data Queue Best Nodes Rqus oe

Load Load Get
Quue I insert! Prune

TFerrrain ATO Front. K__ _

Figure 4.2. Structure Chart for the Control Program
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known solution. Figure 4.2 is a structure chart for the controller program. This chart shows the

major functions performed by the controller and the dependencies between each of the functions.

The following is the pseudo-code describing the algorithm of the controller program.

RECEIVE file names from host
Load data from the Air Tasking Order file
Initialize the queue
Place the base location on the queue
Find an initial route to bound the search space
While (queue not empty) or (processors still working) or

(expand route message waiting)
While (expand route message waiting) and (queue not full)

RECEIVE expand route message
If (route.cost < best.cost)

Insert route into the queue
If (route is a solution)

Set route to best route
Prune the queue

Endif
Endif

Endwhile
While (work request message waiting)

RECEIVE work request message
Find which processor sent request message
Set status of that processor available
Subtract 1 from the number of processors working

Endwhile
While (queue not empty) and (queue's front.cost < best.cost) and

(a processor is not busy)
Set status of first available processor to busy
Remove route from front of queue
Add I to the number of processors working
SEND expand route message to the processor
Add I to the number of routes expanded

Endwhile
Endwhile

SEND messages to the host
SEND best route
SEND timing information to the host program

SEND done message to all worker nodes

4.2.4.3 Worker Program. The worker program finds all the next, valid locations which

can be reached from a given partial route. The worker receives the file names of the files which

contain the terrain, radar detection, and Air Tasking Order (ATO) (lata from the host program.
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After the data is loaded the worker requests work from the controller program. Once work is

received the children of the last location visited are found. A child is defined as those locations, in

the three dimensional search space, which are adjacent to the given location. Adjacent is defined

as being one grid location away, including in a diagonal line. The locations directly above or below

are excluded. Thus for any given location there is a maximum of 24 neighboring locations (8 at the

same altitude, 8 at the altitude below, and 8 at the altitude above). The assumption is made, for

simplicity, that the change in altitude is the same as the change in distance at a given altitude. In

other words the altitude resolution is the same as the terrain resolution. This assumption greatly

reduces the complexity of the distance traveled calculations. The heuristic for h' is described in

further detail in section 4.4.

Min

Get Fin Fnd7 Reque Return
Data B t Chidre W ork Info

ILoad Lod LoadCault
LTerrain Raa A7Cot

Fd Find Find
gh' f

Find Valid

110agnitude

Figure 4.3. Structure Chart for the Worker Program
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Each child was checked to ensure it was within the boundaries of the terrain data. As valid

children were found, the costs (g, h', and f') are calculated and the partial route were sent back

to the controller program for insertion into the open list queue. The worker programs continued

requesting work and expanding partial routes until the controller program sent a message telling the

worker programs to stop. At this point the worker programs sent timing and expansion information

to the host program. Figure 4.3 is a structure chart for the worker program. This structure chart

shows the major functions performed by the worker processors and and the dependencies between

each functions. The following is the pseudo-code describing the algorithm of the worker program.

Initialize data
RECEIVE file names from host
T.oad data from the terrain file
Load data from the radar detection file
Load data from the Air Tasking Order file

SEND request for work to the controller

Loop Forever
If (expand route message waiting) then

RECEIVE expand route message
Add I to number of routes expanded
For altitude level below, equal and above present altitude

For each child at that altitude
If the child is a valid child

Add child to the route
Calculate f', g, h'
SEND route to the controller

Endif
Endfor

Endfor
SEND request for work to the controller

Endif
If (done message waiting) then

Break out of loop
Endif

Endloop

SEND number of routes expanded to the host
SEND timing information to the host
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4.2.4.4 Sequential Version. The algorithm for the sequential version is the same as

for the parallel version except for the communication between programs. Whenever the parallel

version sent messages the sequential version simply performed a call to the necessary routine. Thus

the routines of the host, controller, and worker programs was combined into a single program

which would execute on a single processor. Thus the descriptions and structure charts of the host,

controller, and worker programs from the previous sections apply to the sequential version as well.

Read in file names
Initialize the queue
Initialize data
Load data from the terrain file
Load data from the radar detection file
Load data from the Air Tasking Order file
Place the base location on the queue
Find an initial route to bound the search space

While (queue not empty)
Remove route from front of queue
Add 1 to the number of routes expanded
For altitude level below, equal and above present altitude

For each child at that altitude
If the child is a valid child

Add child to the route
Calculate fl, g, h'
If (route.cost < best.cost)

Insert route into the queue
If (route is a solution)

Set route to best route
Prune the queue

Endif
Endif

Endif
Endfor

Endfor
Enduhile

Print the best route
Print timing, efficiency, and number of routes expanded
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4.3 Data Structures

In examining the UNITY description of section 4.2.2 two main data structures are evident,

one which is the open list and one which contains information about a route. The implementation

of these two data structures is given in the following sections. Two other data structures are also

described which are used to represent the terrain and detection information.

4.3.1 OPEN List. The open list is a priority queue based on the results of the additive cost

function (f' = g + h') associated with a route. Those routes with a lower cost are placed ahead

of those with a higher cost which produces a priority queue. The C language data structure of the

open list is

PATH q[Q.SIZE+I];

which is simply an array of type PATH. The PATH data type is defined in the next section. The

size of the queue is a parameter specified before compilation and the memory is allocated at load

time. This data structure is chosen versus a true linked list because the code used to manage the

open list had already been developed (22). Rewriting the open list manager is not within the scope

of this research effort, though an evaluation of the usefulness of this data structure can be made.

4.3.2 Route Information. Information about a route is stored in the following C language

data structure which is given the label PATH.

typedef struct
{
int number;
Us x [MAXPATHLENGTH + 1];
US y [MAXPATHLENGTH + 1];
Us z [MAXPATHLENGTH + 1];
int vector-x;
int vector-y;
int vector.z;
float distance;
float radar;
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float g;
float cost;
int link;

} PATH;

The arrays known as x, y, and z contain the coordinates of each location along the route and

number indicates the number of locations, or entries, in the arrays. The length of the arrays is

defined by MAXPATH-LENGTH which is a parameter declared before compilation of this data

structure. The direction the aircraft flew to reach the last location, from the next to last location, is

stored in vector-x, vector.y, and vector-z. The total distance flown and accumulated radar detection

cost are stored in distance and radar, respectively. The actual cost to reach the given location is

stored in g while the projected final cost (f) is stored in cost. The variable link is used by the

open list management routines.

Table 4.1. Memory Requirements For Data Types
Data Type Memory Usage
US 2 bytes
integer 4 bytes
float 4 bytes
double 8 bytes

Table 4.1 shows the memory requirements for each type of C language data type. It is

evident that an unsigned short requires have the memory as an integer variable. The restriction

placed on unsigned shorts are that the range of valid numbers is 0 to 65,536. Since x, y, and z

are indices into the terrain and radar matrices values less than 0 are not, encountered. Thus, the

only restriction is that the terrain and radar matrices not be larger than 65,536. Tie coordinate

arrays (x, y, and z) are declared as unsigned short (US) versus integer to save memory. This data

structure is used by the open list because the memory saved for each location stored is 6 bytes.

If MAXPATHILENGTH were declared as 99 then 600 bytes would be saved. This may not, be

much, but then this data structure is used to define the open list. If QSIZE were declared as 1000

then 6600 bytes would be saved. The structure defined by Garmon used intege- declarations (22),
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but when it was modified to support. this problem the amount of memory being allocated exceeded

the processor's memory. Thus, unsigned short data types were needed. The directional vector

displacement variables (vector._x, vector-y, vector-z) are declared as integers. Since the directional

vector is a unit vector the displacements can take on the values -1, 0, and 1. Since negative numbers

are possible the integer data type was needed.

4.3.3 Environment Representation. As discussed in the previous chapter the use of a grid

representation is simple and straight forward. Also this is the representation used by the Defense

Mapping Agency (DMA) digital terrain database (31:578)(38:172)(37:182-183).

4.3.3.1 Terrain Data. A two dimensional matrix was used to represent the terrain

over which the aircraft was to fly. The indices (x, y) corresponded to the location and the entry in

the matrix corresponded to the elevation at that location.

integer terrain -matrix[MAXMATRIXSIZE+ I[MAXAIATRIXSIZE+ 1];

4.3.3.2 Detection Data. A three dimensional matrix was used to represent the space

through which the aircraft was to fly. Tile indices (x, y) corresponded to the location and were the

same as those used for the terrain data. The z index indicated the altitude of the location. Thus

the coordinates (x, y, z) gave the location of the aircraft in the three dimensional space with the

indices (x, y) being used to determine the elevation at that location.

float radar-matrix[MAXAMATRIX-SIZE+ 1][MAX-MATRIX -SIZE+ 1][MAXMATRIX.SIZE+ 1];

4.4 Heuristics

The heart of the A* search algorithm is the use of an heuristic to predict the cost of continuing

along a given search path. The cost of arriving at. a given location is known so the heuristic is used

to determine the cost of continuing along the path to the solution. In order to guarantee that the
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solution returned by the A* search is optimal the heuristic must be admissible. A heuristic function

is admissible if

h'(n) < h(n) Vn (4.1)

where h(n) is the actual cost of going from the present node to the goal node (43:77). To limit

the search space and guarantee an answer which is considered optimal it is necessary that h' be as

close to h as possible without exceeding h. Also when creating the h' function, the designer must

consider the trade-off between the time saved by reducing the search space and the time needed to

calculate h'. If not careful it is possible that an h' is calculated which greatly reduces the search

space, but which takes a great amount of time to calculate. In this case a simpler, less accurate h'

could actually cause the search time to be reduced.

4.4.1 Weighting of Criteria. Before any discussion of heuristics used for this search process

it is necessary to first define how the cost value is calculated. For this research only the distance

flown and probability of detection are the criteria used to select, routes. Since more than one

parameter is used to determine the feasibility of a route the cost, calculation uses both criteria.

Weighting factors are applied to each criteria to allow a valid combination of criteria into a single

value. The cost associated with travel between two points is given in the following formula:

Cost = (Radar Weight. Radar Cost) + ( ( 1 - Radar Weight) • Distance) (4.2)

where distance is the distance between the parent location and the child location, not the total

distance of the route. The radar cost is defined as

Radar Cost = Probability of Detection • Distance. (4.3)
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This means that, for a given probability, at a location, the shortest distance will produce the smallest

radar cost. This is true since the longer an aircraft is within a radar's coverage the greater the risk

to the aircraft, all things being equal. The value for the raddr weighting factor is stored in a header

file which is incorporated into the software at compile time.

4.4.2 Siraight-Line Distance. A very simple heuristic used for the A* search algorithm used

to solve the mission routing problem is finding the distance between a given location and the goal

location. Finding the distance between two points in a three dimensional space is given by the

following formula (34:814):

IPIP 21 = (x 2 x1 )2 + (y2-yl)2 + (z 2 -zi) 2  (4.4)

Since the shortest distance between two points is a straight line this would be an admissible heuristic.

This heuristic requires little time to calculate, but it only uses one of the parameters to project a

cost which may cause h' K< hactuai. This argument holds if the weight of the distance parameter in

the cost calculation is small with respect to the combined weights of the rest of the parameters. If,

on the other hand, distance is weighted heavily, then h' will not be much less than hactuai. Thus

use of this heuristic may not reduce the search space or result in the desired decrease of execution

time. It may have little impact on the cost and thus the A* search is reduced to a simple best. first

search. A more accurate heuristic, employing all the parameters of the cost, function, is desirable.

4.4.3 Recursive Search with Straighl-Line Distance Calculation. As stated in the previous

section a heuristic employing all of the parameters of the multicriteria problem is desirable. This

type of heuristic more closely matchs the cost. calculation than the previous heuristic and may give

a result closer to the actual cost (haetuat), but it may require more time to calculate.

A limited recursive search is used to calculate a projected cost. From a given location a

recursive search finding the minimum actual cost to a specified number of children is conducted.
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At the end of the recursive search the straight-line distance heuristic described in the previous

section is used to project the cost from the present location in the recursive search to the goal

location. This recursive search uses the same algorithm as the actual expansion algorithm only

modified to incorporate recursion. The following pseudo-code shows the algorithm employed.

If (recursion depth reached) then
Calculate straight-line distance
return distance to the calling routine

Endif

If (goal reached) then
return 0 to the calling routine

Endif

For altitude level below, equal and above present altitude
For each child at that altitude

If the child is a valid child
Add child to the route
Find h' by recursing with this new partial route
Calculate g to reach this location
It V < best V at this level

Set V to best V
Endif

Endif
Endfor

Endfor
Return best V to the calling routine

As can be seen from the pseudo-code the routine simply finds the minimum actual cost of

traveling to a certain number of children away from the present location and then using the straight-

line distance heuristic to estimate continuing along the route. This heuristic uses all the search

parameters for part of the heuristic calculation and then the single parameter of distance for the

rest. This heuristic is admissible since it combines actual costs along part of the projected route

along with the straight-line distance heuristic, which is admissible, for the rest of the route. The

recursive heuristic helps to distinguish between routes by "looking" down a route some distance.

This does not guarantee that the route will be a good one since areas resulting in high costs may

be beyond the range of the recursive search, but, it does help to identify routes early in the search

4-15



process which may lead to high cost areas. As these types of routes are found they are given a higher

h' and are placed further from the front of the open list resulting in the continued exploration of

more promising routes. Thus the recursive search finds the local ol)timum cost from a given location

at a given distance away. This heuristic is susceptible to the combinatoric explosion phenomenon

since it explores, or actually searches, from a given location all the children to a specified depth.

As the depth increases linearly the time to calculate the heuristic increases exponentially because

of the exponential increase in the recursive search space.

4.5 Implementation

The system is decomposed into three programs. The host program is the interface between

the user and the programs running on the nodes of the parallel computer. The controller program

manages the open list used by the A* search algorithm. The last program, the worker, performs

the expansion of each location in the search space. The following sections discuss each program

in detail. A header file containing information such as the maximum size of the open list queue,

maximum length of a route, and maximum sizes of the supporting matrices is included at compile

time.

4.5.1 Host Program. The code for the host program is taken from that developed by Gar-

mnon, for his thesis, to solve the traveling salesmen problem (TSP) using a parallel A* search (22).

The code was modified to ask the user for the file names of the files containing the terrain, radar

detection, .,d Air Tasking Order (ATO) information. The program then loads the controller and

worker programs, sends them the file names and waits for the results. Upon completion the pro-

gram prints the solution route along with timing informat ion for analysis purposes. A listing of the

C language code for the host program can be found in Appendix A.I.1.
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4.5.2 Control Program. This code is also taken from that developed by Garmon, for his

thesis, to solve the traveling salesmen problem (TSP) using a parallel A* search (22). Some

problems were encountered during execution which are discussed in detail in section 4.5.5.1.

As discussed in section 4.3.1 the open list is simply a two dimensional matrix where each

column is of type route information (section 4.3.2). The link field is used to map the entries in

the matrix to a linked list. As routes are inserted into the open list the link fields are adjusted

to ensure the route's cost (f') keeps the open list in increamsing cost order, a priority linked list

scheme. Only routes whose cost (f') is less than the best are inserted into the open list since these

routes appear '.o lead to a solution with a lower cost.. As routes are inserted each is checked to see

if it is a solution route, if so that route becomes the new best, route and the open list is pruned.

The pruning routine removes all routes whose cost is equal to or greater than the best route. This

results in the best route also being removed from the open list, but its information had been stored

in the best route variable which is defined to be of the route information type (section 4.3.2). The

purpose for pruning the open list is to free up memory, or in this case free up colunms in the open

list, matrix, since all routes following the best route, in the open list, are known to lead to worse

solutions. The following pseudo-code shows the algorithlms used to insert routes into the open list,

remove the route from the front of the open list, and the routine used to prune the open list..

r.'.IORITY INSERTION INTO THE OPEN LIST

If (open list is full) then
Exit this routine

Else
Get the next available location from the free list
Adjust the pointer to the front of the free list
Insert the route into the open list mat-:ix
If (open list was empty) then

Set link of route to end of queue
Set front of queue pointer to the column of the route inserted
Flag it as busy

Else
If (cost of inserted route < cost of route at the front of the open list)

Set link of route to column of front of open list
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Set front of queue pointer to the column of the route inserted
Else

Set found flag to false
While ( (not at end of open list) and

(cost of inserted route > cost of route in the open list) )
If (the same state)

Set found flag to true
Exit the while loop

Else
Find next route in the open list

Endif
Endwhile
If (found flag false) then

Have route inserted point to column pointer to by previous route
Have previous route in list point to route inserted

Else
Set front of the free list back to column of route inserted

Endif
Endif

Endif
If (found flag false) then

Increment the length of the open list
Increment number of insertions counter

Endif

If (free list is empty)
Perform a beam search reduction on the open list

Endif

REMOVE THE FRONT ROUTE FROM THE OPEN LIST

If (open list is empty) then
Exit this routine

Else
Copy the route at the front of the open list to a temporary area
Set front of the open list to the route pointed to by route removed
Decrement the length of the open list
Set link of column of the route removed to the front of the free list
Set front of the free list to the column of the route removed

If (open list was full) then
Flag it as busy

Else
If (open list is now empty) then

Flag it as empty
Endif

Endif
Return the route removed to the calling routine

Endif

.I-I8



PRUNE THE OPEN LIST

If (open list is not empty) then
If (cost of the first entry in the open list >= cost of best route) then

Add all columns in the open list to the free list
Else

While ( (cost of route in the open list < cost of best route) and
(link of route in the open list is not an end of queue marker) )

Find the next route in the open list
Endwhile
Reset the length of the open list
If (link of route in the open list is not an end of queue marker) then

Set previous route's link to end of queue
Set route's link to front of free list
Set front of free list to column of route
Flag the open list as busy

Endif
Endif

Endif

Normally the termination criteria for the A* search is when the route removed from the front

of the open list is a solution route. This is not the case in this implementation. Since the pruning

routine removes all entires in the open list with a cost equal to or greater than the best solution

route, the termination criteria for the search is when the open list was empty. This approach allowed

the prune routine to operate regardless of the order in which routes of equal cost are inserted into

the open list. Also since a separate data structure is used to store the best solution, space is saved

in the open list by not keeping the solution in both its own data structure and the open list. It

is necessary to insert, the best solution into the queue before pruning, or ensure the best solution

is not inserted. Pruning of the open list takes time, which increases the execution time of the

controller program, but this is small compared to the overall execution time and it is the method

employed to determine the termination of the search.

The open list is a priority linked list. The routes are inserted in ascending order of cost

and links are established pointing to the next route in the list. A matrix representation• of the

linked list is used versus a true linked list. The code developed by Garmon used the matrix data

4-19



structure so this was one reason in selecting the matrix version. Also with the matrix version the

amount of memory usage is known at execution time versus memory being allocated during run

time. This does cause the open list to have a fixed size, but it does eliminate a possible out of

memory run time error. It also eliminates the time associated with allocating and deallocating

memory when managing the open list. This type of approach simplifies the algorithms used to

perform the management functions.

Since the size of the open list, is fixed, a method is needed to ensure space would be available

once the open list became full. A beam search reduction strategy is used to reduce the size of the

open list, once it becomes full. In a beam search only x number of solutions at the front of the

priority queue are kept and the rest are discarded. This strategy is employed whenever the open

list becomes full thus freeing up space in the open list. Because routes are discarded, not based on

cost with respect to a solution, this method is not guaranteed to return an optimal solution. If the

open list is very large and a small percent of the routes are discarded then the probability that. a

partial route leading to an optimal solution is discarded is reduced.

In order to bound the search a solution route was found. The controller simply requested the

worker to find a solution, not necessarily the optimal. The cost of this solution was used as the best

cost when inserting routes into the open list. The details of the procedure used to find this initial

solution are discussed in the following section. A listing of the C language code for the controller

program can be found in Appendix A.1.2.

4.5.3 Worker Program. The worker is the heart, of the search for the best mission route

and the search space is different from that used by Garmon, thus this program is designed and

implemented without using any of Garmon's worker program.

The worker program finds all the next, possible locations froim a given location. A set of

rules, or constraints, are used to determine whether a child location can be reached from the parent

location. The rules, or constraints, used to determine if a child is valid are:
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1. the aircraft must be some minimum altitude above tile ground and below its maximum

altitude (ceiling),

2. the aircraft must be above a specified altitude and below a specified altitude,

3. the distance flown must be less than the aircraft's combat radius, and

4. the child location must be reachable from the parent location by the aircraft based on the

direction of flight. In other words a child location could only be reached if it caused the

aircraft to perform a turn which was greater than the minimum turn radius of the aircraft.

To determine if an aircraft has not exceeded it minimum turn radius and likewise climb/dive

angle manipulation of directional vectors is used. A single variable, known as field-of-view, is used

to represent the greatest change in direction allowed for the aircraft. For simplicity the field-of-

view is defined as the maximum change in direction allowed regardless if the change was caused

by a climb, dive, turn, or a combination of them. As seen in the route information data structure

(section 4.3.2), a directional vector is kept which indicates the direction flown by the aircraft to

reach the parent location. A directional vector from the parent location to the child location is

then calculated. The following formulas show the method used to find the angle between two

3-dimensional vectors. The dot product of two vectors is given by (34:826)

A. B = JAIIBI cosO (4.5)

and also by (34:825)

A • B = alb, + a 2b2 + a363 (4.6)

Setting the two equations equal and solving for 0 yields

0 = arccos abi + a2b2 + a:ib:i (4.7)
JAIJBI
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If this angle (0) is less than or equal to the field-of-view variable the child location is considered

reachable from the parent location, thus the child is valid. Otherwise the child is not valid and it

is rejected. When moving from one location to another it. is guaranteed that the magnitude of that

direction vector is not 0. The one time when a direction vector is 0 is when beginning the search.

This is because no movement is associated with the beginning state, thus the directional vector's

magnitude is 0. A check is made when validating children and if the magnitude of the vector to

reach the parent location is zero then the child is valid. If an attempt, were made to calculate an

angle is this situation a divide by zero error will occur. For all other times both vectors, to reach

the parent and from the parent to the child, will be greater than 0 and the calculation can be made.

To bound the search initially, a solution is found which is not necessarily an optimal solution

nor is it guaranteed to be a valid solution. The controller sends a message to the worker program

containing the beginning location. The routine used to find the initial route tires to find a route

which is a straight line between the beginning and ending locations. The only requirement placed

on the route is that each location has to be some minimum distance above the ground. If the

location selected does not meet this constraint then the location at the same (x, y) coordinate of

the child location, but the next higher altitude is checked. If this location meets the constraint then

a new straight line is calculated and the search continues. If the location still does not meet the

constraint, then the (x,y) coordinate of the parent and the next. higher altitude (i.e. the aircraft is

traveling vertically) is made the next location. This procedure continues until the goal is reached.

To compensate for vertical travel the distance traveled is doubled. Since it is possible for the aircraft

to travel in a vertical direction the resultant route is not guaranteed to be valid. The following

pseudo-code shows the procedure used to find the initial route. This routine is implemented by

converting the pseudo-code into C language code. To reduce the message traffic only node number

I returns the initial solution.

If (goal reached) and (I'm node 1) then
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Return the route to the controller program

Else
Calculate the vector from the parent to the goal location
Find the child in this direction

Calculate the minimum flight altitude at this location
Determine the actual altitude of the child

If (actual altitude < minimum altitude)
Calculate the costs to reach the child
Place the child location in the route
Recursively call this routine using this new route

Else
Set the found flag to false
While (change in altitude < 1)

Increment the change in altitude
Find the child in this direction
Determine the actual altitude of the child
If (actual altitude < minimum altitude)

Calculate the costs to reach the child
Place the child location in the route
Recursively call this routine using this new route
Set the change in altitude to greater than 1
Set the found flag to true

Else
Make the child directly above the parent location
Calculate the costs to reach the child using double the distance
Place the child location in the route
Recursively call this routine using this new route

Endif
Endwhile

Endif

The recursion heuristic described in section 4.4.3 is implemented by simply converting the

pseudo-code into C language code. The depth of the recursion is defined in the header file. This

parameter of the recursion search is used to change the granularity of the worker program. Granu-

larity is the computational time versus the communication time. By increasing the recursion depth

the computation time is increased while the communication time remained the same, thus the

granularity of the worker program increases. Likewise the granularity can decrease by decreasing

the recursive search depth. A listing of the C language code for thme worker program is found in

Appendix A.1.3.
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4.5.4 Sequential Version. The implementation of tile sequential version of the parallelized

A* search is straightforward. The controller and worker programs are combined into a single

program. Whenever communication between processes occurs, the message call is replaced with a

function call. This effects the worker little, but the controller functions were modified to remove

checking for processors requesting work and waiting messages. The controller's main loop is reduced

to simply removing and inserting routes into the open list, along with determining when the search

terminates.

The reason the host is include is so this sequential version can run on the hypercube, thus

allowing a direct comparison between the sequential and parallel versions. Thus the same host

algorithm used for the parallel code can be used for the sequential with the minor change of

loading the sequential code on a node versus loading the controller and worker programs. A listing

of the C language code for the sequential version, along with the host program, of the parallelized

A* search is in Appendix A.2.

4.5.5 Problems Encountered. Implementation of the parallelized mission routing software

system was not without its problems, some were design errors and others were system and language

implementation errors. The following sections discuss some of the problems encountered during the

implementation phase.

4.5.5.1 Termination of the Search. A problem occurring in the determination that,

the search process had ended. In the original controller program termination of the search occurred

when the OPEN list was empty and all the processors were requesting more work. This is a logic

completion condition, but there is a possible timing error which manifested itself during execution.

The condition occurred when the system began processing. Each processor would initialize itself

(i.e., load data and initialize its variables) and then request work from the controller process. The

controller would remove the first and only route off the OPEN list, (the starting location) and send it

to a node. The way the nodes are selected results in node I always being selected in this case. Node
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1 would read in the route to be expanded, find all the children and send them back to the controller,

then request more work. If the controller read in the request for more work from node I before

it read in the messages containing the children then the controller had an empty OPEN list with

all processors requesting work which was the termination condition, so the program terminated.

A simple condition was added to the termination condition which checked to see if any children

messages were waiting to be read in by the controller program. This check fixed the problem and

the system operated correctly.

Another logic problem encounter in the management. of the open list was the use of the prune

routine. As stated earlier the usual termination criteria for the A* search is when the route removed

from the front of the open list is a solution. Thus all subsequent routes are of equal or greater

cost meaning all other solutions are also of equal or greater cost. When the parallel version of the

code was converted to the sequential version the program would not terminate correctly since the

solution route is inserted after the queue has been pruned. This problem is easily remedied once

the termination criteria are clearly understood.

4.5.5.2 State Duplication. Another problem encounter with using the existing open

list manager for the mission routing problem was that of duplicate states being entered into the

open list. A state is defined by not. only the parent location, but also by the directional vector. If

two routes have the same parent location, but different, directional vectors then they are different

states since different sets of child locations are possible. If the two routes have the same parent

location and same directional vectors then the child are the same and the routes are in the same

state. Thus it is possible that routes can be in the same state, regardless of the actual route

leading to the location previous to the parent location. If duplicate routes were allowed to exist

then the number of routes in the open list would get very large and workers would actual duplicate

worker, thus waste processing resources. During the insertion process it is a simple check to see if a

state already existed in the open list.. As the insertion routine moves through the pseudo linked list
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examining the cost a check is added to compare the parent and directional vector of the route being

added to the route being examined in the open list. If the routes are in the same state then the

insertion routine terminates, not inserting the new route into the open list. This process does not

remove a same state whose cost is greater than the one being inserted. This simple check reduces

the number of routes being entered into the open list and eliminates duplicate work performed by

the worker programs.

4.5.5.3 System Message Buffer. After an hour of processing the system simply hung.

Each of the worker programs halted and the controller continued waiting for messages which would

never arrive. Thus the system was in a form of deadlock. It was assumed that the open list matrix

was getting full then causing the system to hang. The software is supposed to terminate processing

whenever the open list gets full, but this did not seem to be the case. The problem was debugged by

making the open list matrix very small and monitoring the insertions, removals, and length of the

open list.. It was observed that once the open list gets full the controller program removes a route

and inserts a single route. The way the open list management algorithm has been implemented a

message is read if there is room in the open list. The next check is to see if a worker program has

requested more work. When the open list got full the controller ended up waiting until a worker

requested more work, thus causing the routes coming back from the worker to be left in the system

message buffer until there is room in the open list. Once a route is removed from the open list and

sent to a worker program, a route in the system message buffer is removed and the route inserted

into the open list. This process causes the system message buffers to get full. Once the operating

system detects a system message buffer is full the processor trying to send another message is

halted and once halted it remains in that state until the cube is released hack to the system. This

is not a new problem as it had been uncovered by Work and others (50:137-138). The niethod

employed to work around this system error is to implement a beam search reduction scheme which
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was discussed in section 4.5.2. This frees up space in the open list, thus allowing the controller to

continue receiving more than a single route for each route sent for expansion.

4.5.5.4 Type Checking. Unlike the Ada programming language, the C programming

language provides no means of performing data type checking. This can lead to problems when

working with data types in a single assignment statement. This problem may or may not manifest

itself since it could be architecture dependent. This problem caused errors when testing on an

architecture other than the hypercube. The matrix indices were declared to be unsigned short

integers to reduce memory requirements and still provide for the range of numbers needed. An

unsigned short variable requires only 2 bytes of memory while a variable declared to be all integer

requires 4 bytes of memory. Using an integer declaration to read in variables declared as unsigned

shorts produced no errors on the hypercube, but this was not the case on the sun workstations.

This was due to the bit numbering scheme employed by Intel which is the reverse of that used by

Sun. Different computers handled the error differently. The Sun3 workstation simply truncates 2

bytes, which are the bytes where the unsigned short data is located, and uses the other two bytes

which contain zeros. The Sun SPARCstation (Sun4) aborts execution with a bus error message.

Simply using an unsigned short declaration in the read statement solves the error. Programmers

must remain aware of the potential for errors not only when reading in information, but. also when

working with multiply data types.

4.5.5.5 Round-off Error. When testing the calculation of the angle between the two

directional vectors invalid results were obtained at the end points of the arc cosine function returned

values (i.e. when the angle was either 0 or 7r radians). The aces function requires the input

parameter to be of the type double, so any floats were cast as type double. This seemed to

solve some of the errors encountered, but not all of them. Sonmetimes the arc cosine function

returned a correct answer for 0 and 7r radian angles andI sometimes an error was returned. A

careful examination of each of the parameters revealed that when the magnitude of each of the
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directional vectors was V'2, a correct answer for the arc cosine calculation was returned, but when

the magnitudes were v'3 then errors were encountered. It was at this point that the calculations

for the numerator and denominator (for the arc cosine input parameter) were separated and a print

declaration of %18.20f was used in the print statement. It was found that the square root function

returned a value with a small error. When performing v3_ • v'3 the value 3 was not returned,

but the value 2.99999 which caused the error to occur in the arc cosine function. This was not, the

case when performing 1 • V2_ as the result was equal to 2. Since the input parameter to the arc

cosine routine is -1 < x < 1 a value out of this range indicates an overflow/underflow occurred

during the calculation and the value needs to be set to the correct value. This check ensures the

arc cosine routine is sent a valid value.

4.6 Summary

This chapter described and provided detailed examples of the date structures used by the

parallel A* search algorithm designed to solve the mission routing problem. The high-level design

from Chapter III was further refined adding communication, architecture specific, and implementa-

tion details. Supporting functions were also described in detail. Also presented was a discussion of

design and implementation considerations made. The next chapter presents the mission scenarios

used to validate the software and the results and supporting analysis of the implemented parallel

A* search algorithm.
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V. Experimental Testing, Results, and Analysis

5.1 Introduction

This chapter examines the results of executing the system designed and implemented i:n the

previous chapters. Before an analysis of the performance of the software can take place it is

necessary to first define the metrics which are used. These definitions are presented in section 5.2.

The experimental input data are given in section 5.3. The experiments are described in section 5.4.

The results obtained and analysis are found in section 5.5.

5.2 Metrics

In order to determine the viability of using a parallel computer to solve the mission routing

problem it is necessary to establish some means of analyzing the performance of the software. Num-

ber of nodes expanded, execution time, program efficiency and speed-up are the metrics selected.

Each of these metrics are discussed in detail in the following sections.

5.2.1 Nodes Expanded. The number of nodes expanded is defined as tWe total number of

nodes sent to the workers to have children found. As discussed in previous chapters, the goal of

a heuristic search is to reduce the search space which in turn minimizes the time needed to find a

solution. Since the search is performed in parallel not only is the best appearing route explored,

but also the x other best appearing routes. For instance, with 7 worker programs the best, 7 routes

are sent. to worker programs for expansion. In a sequential version it, is possible that 6 of those

routes would never be expanded if the cost of the routes produced from expanding the best route

are less than any of the other 6 routes. Since routes are expanded in parallel the likelihood that

routes not leading to an optimal solution are also explored is increased. Thus, the number of

nodes expanded is a "good" indication of the effectiveness in reducing the search space though in

a parallel processing environment, this metric can not be used alone. It, can be used to compare

different, types of heuristics. As long as the number of nodes expanded is used for comparisons for
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the same size parallel computer then it is a true measure of the search space. If this metric is used

to compare different sizes of parallel computers then it is only an indication because of the amount

of "extra" work taking place.

Anot her use of the number of nodes expanded met ric is determining load balancing efliciencc.

The concept of load baluncing is 1iscussed in section 2.2.2.3. In this case, number of nodes expanded

refers to the number of nodes cxpanded for any particular processor in the parallel computer and not

to the total nodes expanded for the entire search process. If the system is effectively load balanced

then each processor should expand roughly the same number of nodes. This is not a metric to

determine the "true" load balancing effectiveness since processors may not spend the same amount

of time expanding nodes. For instance if one route being expanded produced 5 -l;ildren routes

and another produced 3 children routes then it is expected that the processor producing 3 children

routes would request. work sooner thus expanding more nodes. But on the average it is expected

that each processor would expand roughly the same number of nodes. This discussion does depend

on the algorithm used by the controller processor to handle messages. The controller not only

reads in expanded routes, but also sends routes to workers for expansion and receives request

for work frorn the worker processors. Thus this metric may not give a "true" indication on load

balancing effectiveness. but it can give a "good" indication especially when used with the average

worker efliciency nietric discussed in section 5.2.3. The number of nodes expanded per individual

processor is not used directly for the analysis, but the data is contained in Appenidix (C' however,

this information is used during implementation and testing of the software to monitor system usage

and to detect possible communication problems between the controller and worker piocessors.

.5.2.2 Lxrcution Tiimc. Execution time is ultimately the most important metric since this is

what the user is most concerned about, other than the validity of the results. The nmain requirement

of the user is to reduce the execution time so that solutions are found in a "'reasonable time". Also

as stated in the next section, in a parallel processing en vironiment work actially performed by each
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processor has a bearing on the execution time, but for a search the major factors are program

efficiency and search space. By increasing program efficiency and reducing the search space thie

result should be a decrease in the overall execution time. Time can be used to compare different.

search strategies, number of processors used, and the effect of changing architectures.

There are a number of times associated with a program and the timing information desired

depends on the problem being explored. For instance if a new piece of architecture were installed

then the time to access that piece of equipment would be important. This research is looking at

the overall execution of the software and the effects heuristics and architecture have on that time.

For this investigation the time metric is categorized into:

"* Time to load the data from the inputs files (terrain, radar, ATO) and initialize any variables

"* Time spent finding the initial route used to bound the search space

"* Time spent searching for a solution

"* Total execution time

The first two timing metrics should be independent, of the number of processors used since each

processor is identical and there is no interaction taking place during this portion of the software.

Thus as the number of processors is changed it is expected that these values will remain the same.

They can be used during testing of the software to monitor system performance. but they are not

necessary for the overall analysis. The time spent searching for a solution is the total time from

when the search is begun until it is terminated, including any idle time. The total execution time is

simply the summation of the other three time metrics and since the first two should be "relatively

constant." no additional information can be derived on the effect the heuristics or the architecture

have on the execution time. Therefore, the time spent searching for a solution is the main metric

needed for analysis.
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5.2.3 Program Efficiency. For this investigation, program efficiency is defined as the ratio

of time spent performing work versus the run time of the process. For the worker programs it is the

time spent expanding nodes versus the total search time. This is given in the following formula:

work time
Worker Efficiency - search time (5.1)

where work time is defired as the time actually spent by a worker program receiving a route,

expanding the route, and sending each of the generated new routes to the controller program.

Search time is the total time spent by the individual processor in the search phase including idle

time waiting for work requests to be fulfilled. This should be the same for each processor, since all

start and end at the same times. The average worker efficiency is given by

-cube dim

Average Worker Efficiency = i= Worker Eficiency1  (5.2)
cube dim - 1

If the workers are always busy expanding nodes then the average worker efficiency is equal

one, but then this number can not be one because of the overhead associated with communication

between the worker and controller programs. As the average worker efficiency approaches zero the

workers are spending more time waiting for the controller program to respond to their request for

work than they do performing actual work. This metric is a good indication of the communication

bottleneck at the controller node.

Likewise, the efficiency of the controller program is defined as the time s pent performing

management of the open list versus the total search time.

work time
Controller Efficiency = work time (5.3)

searc- tne(
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The work time is defined as the time the controller actually spent managing the OPEN list and

the search time is the same as for the worker efficiency. If the controller is always busy inserting

to and removing information from the open list then this ratio would be equal to one. As with the

worker program this ratio can not equal one because of the communication overhead. As this ratio

approaches zero it indicates that the worker programs may be spending too much time expanding

a route. The desire is for the worker programs' efficiency to be near one while at the same time the

controller program's efficiency to also be near one. Neither call be one because of communication

and processing overheads. Changing the grantdarity of the worker program effects the efficiency of

the controller which in turn impacts the workers' efficiency. There are interdependencies between

the controller's and workers' efficiency. This information in cunJunction with the execution time

can be used to "fine-tune" the time each worker spends expanding a given route and help to reduce

the total execution time by matching the granularity of the problem to the parallel system being

used.

5.2.4 Speed-up. The commonly used terms used to describe the performance of parallel

processing systems are speed-up and efficiency (45:20). The advantage of parallel computers is their

ability to possibly decrease the execution time of software. Speed-up is a measure of improvement

which indicates the advantages achieved when running software on a parallel computer versus a

single processor computer. Speed-up is defined by

sp = T- (5.4)

where Sp is the speed-up achieved on a parallel computer with p processors (45:20). 7T is the

time running the algorithm on a single processor and Tp is the time running the algorithm on a p

processor parallel computer.
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Efficiency is a measure of the speed-up per node realized. Efficiency is given by (45:21)

Ep = SP (5.5)
p

These two metrics provide a means of analytically measuring the effectiveness of the parallel

implementation of the software.

5.3 Input Data

The following sections describe the terrain, radar detection, and Air Tasking Order (ATO)

data used to test and analyze the performance of the parallel software.

5.3.1 Terrain. A representation of the terrain is shown in Figure 5.1. The terrain is devel-

oped so as to have a variety of features such as mountains, hills, ridges, valleys, and relatively flat

areas. This terrain is used so as to be a general representation of the type of terrain a pilot might

fly over. It also provides more complexity in the search space than a relatively flat terrain. The

contour lines represent each 1000 feet in elevation. A two dimensional grid overlay, represented

by the dashed lines, is placed over the terrain map. Elevation values for each location are then

estimated and stored in an ASCII file. This terrain provides the software with a semi-realistic

search space. The contents of the terrain file are contained in Appendix B.1. This information is

then read in by the worker program and stored in the data structure described in section 4.3.3.1.

5.3.2 Radar. The radar detection is also modeled using the grid method. In this case, a

three dimensional matrix is used with the third dimension corresponding to the altitude above

sea level. The model is created by taking the map used to create the terrain data and selecting

locations for radar sites. The radar sites are indicated by the large black dots. To represent the

radars' coverage, circles are drawn whose centers are located at, the radar sites. Figure 5.1 shows

the approximate radar coverages. These are approximate because of the limitations of the package
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Figure 5.1. The Terrain With Radar Coverage Used

used to produce the figure. Probabilities of detection are then assigned to each location within

the three dimensional representation. The probabilities are based on the center, or site's location,

having a probability of 1.0 and the locations outside of the circle being 0.0 and the values projecting

from the site linearly decreasing. Terrain features effect a radar signal. For instance if a radar site

is located at the base of a mountain, then the radar can not, detect, anything behind the mountain

since the mountain blocks the radar's signals. The assumption being made is that tactical radars

are modelled, since strategic radars have over-the-horizon capabilities. Terrain masking effects are

figured into the estimation of detection values. Areas where overlapping radar coverage occurs

the highest probability is assigned to that location. The coverage from one altitude to another

is modeled as a cylinder, thus values remained constant when changing altitudes except for those

locations where the terrain blocks the field of view of a radar site. The probability of detection

values for each location were placed into an ASCII file. The contents of this file are contained in

Appendix B.2. Only a portion of the file is given (up to 15,000 feet) because the detection was
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modeled as a cylinder and the values at the rest of the altitudes are exactly the same. The worker

program reads in this data into the data structure described ini section 4.3.3.2. This detection

model is simplistic, but it does provide a semi-realistic threat environment. Radar modelling is

itself a field of study and any accurate modelling is beyond the scope of this effort.

5.3.3 Air Tasking Order. The Air Tasking Order (ATO) contains information necessary

to identify and plan the mission. Information entered into the system is the mission designator,

starting location, location of the target, minimum height above ground, and the altitude block

assigned to the mission. The altitude block prescribes the minimum and maximum altitudes at

which the aircraft may fly. This information is also stored in an ASCII file. Three ATO files are

used to test the software. ATO file AFIT-GOA has the starting location at coordinates (1, 1) and

the target at (24, 16). This means a route goes from one corner of the grid to the nearly the other,

resulting in a larger number of possible routes which need to be searched. Mission AFIT-1A has

the same starting location, but the target is at location (17, 17). This reduces the distance between

starting location and target. The last ATO file, AFIT-OA, has the starting and target locations

close together. This file is used to test the determination of valid children (section 5.5.2). The ATO

files used are found in Appendix B.3.

5.4 Experiments

The purpose of this research is to determine the feajibility of solving the multicriteria mission

routing problem using a parallel processing environment. As stated in the first chapter, this research

is focusing on the following four areas of the mission routing problem:

1. representation of the threat environment,

2. decomposition of the A* search algorithm for use on a parallel processing system,

3. application of heuristics to reduce the search space and the execution time, and
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4. effects of parallel computer architecture on the execution time.

The first two areas were addressed during the design phase of this research effort and are discussed

in detail in chapters III and IV which cover the design of the software. The last two areas deal with

the effects each area has on the execution time. The following sections discuss the experiments and

the associated analyses in these two areas. Before the experiments are discussed the test plan is

presented.

5.4.1 Test Plan. A simple and straight forward test plan is used to perform each of the

experiments. The input data described in section 5.3 is used for the experiments. In order to make

comparisons and draw valid conclusions the number of parameters changed is limited to one. Thus

for each experiment only a single parameter is altered. Each of the parameters altered are:

"* vary the search algorithm by removing the bounding function,

"* vary the cube size (change the number of worker nodes),

"* vary the granularity of the problem, and

"* vary the architecture (use a iPSC/2 and a iPSC/860).

The execution time is a function of the search strategy, with all other things constant. The

two strategies are with and without a bounding function. Executing each strategy using the same

input data and computer configuration will indicate the effect, each has on the overall execution

time.

Changing the cube size will provide information into the effects the number of worker nodes

has on the performance of the system. Increasing the number of nodes means that more work can be

done simultaneously, but it is possible that more "wasted" work will be performed. Changing this

parameter of the system will also exercise the controller's ability to manage the open list, efficiently

and the impact on the workers' efficiency.
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A recursive routine is used to calculate h'. The worker programs communicate to the controller

each time a child is found and its costs (f', g, and h') are calculated. Thus if the recursion depth

is increased the time between communications is increased. By modifying the depth to which the

routine searches the granularity of the problem is changed.

Comparing the results obtained on the iPSC/2 and iPSC/8110 will provide insight into the ef-

fects the architecture (i.e speed of CPU and communication channels) has on the performance of the

mission routing software. These two computers were selected because as discussed in Chapter I (see

section 1.6) they were made available to support this investigation. There are other types of parallel

architectures such as a mesh, pyramid, multistage networks, and "fat trees" (23:1829)(51:29), but

access to machines with these types of topologiýýs was not available.

5.4.2 Reduction of the Search Space. A strategy is designed and implemented to reduce

the search space and thus the overall execution time. As discussed in the previous chapter (see

section 4.5.3), the worker programs find an initial route, though not guaranteed to be valid, and

returns this to the controller. This route becomes the known best solution. The controller program

compares the cost of a route being inserted into the open list to the cost of the best solution and

only inserts the route if its cost is less. This only reduces the routes being inserted into the open

list and not the search space itself. To reduce the search space an altitude block is specified for the

mission in the ATO. This altitude block specifies the minimum and maximum altitudes at which

an aircraft may fly for the mission. This mission restriction was employed during Operation Desert

Storm because of the large numbers of aircraft in the same vicinity at the same times and not, to

reduce the search space (21). All this computation to bound the search space requires time, thus

there is a trade-off between the time spent bounding the search and the time spent exploring "bad"

nodes. To investigate this trade-off the algorithm without, any bounding is executed as well as the

same algorithm with the bounding constraints.
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5.4.3 Parallel Architecture. In a parallel processing environment one can not only change

the architecture upon which the software is executed, but also the number of processors used to

solve the problem. This second point deals with the concept of granularity. For a discussion of

granularity see section 2.2.2.2. Experiments were developed to investigate both of these concerns.

5.4.3.1 Different Machines. To test the effect of changing architectures the software

is run on two hypercubes, each based on a different processor. An Intel 8 processor iPSC/2 and

an Intel 8 processor iPSC/860 are used. Table 5.1 (6:10,16) shows the characteristics of each of

these parallel computers. The communication network is the same for both architectures as are the

Table 5.1. Characteristics of the iPSC/2 and iPSC/860
iPSC/2 iPSC/860

CPU Intel 80386 DX Intel i860TM

Math Coprocessor Intel 80387 Intel 860 internal fp
Clock 16 MHz 40 MHz
Operating System Host: AT&T UNIX, System V Host: AT&T UNIX, System V

Node: NX/2 Node: NX/2
Memory Host: 8 Mbytes Host: 8 Mbytes

Node: 12 Mbytes Node: 16 Mbytes
Number of Nodes 8 8
Cube Network Direct-ConnectTM  Routing Direct-Connect TM Routing

" 9 R Mbytes/sec. hb'ndwidth 2.8 Mbytes/sec. bandwidth

operating systems on both the host. and node processors. The iPSC/860 uses a reduced instruction

set computer (RISC) processor (26:1-1) while the iPSC/2 uses a complex instruction set computer

(CISC) processor (28:5-381 thru 5-394), the same processor found in many personal computers

(PCs). This along with the clock speed effect. the execution time of the software. Numerical

calculations are used to find children, determine the validity of a child, and to calculate the costs of

a child. Thus, another difference affecting the execution of the software is the math coprocessors.

5.4.3.2 Number of Processors Used (Granularity). Testing the effects the number of

processors used to solve the problem ham on the overall execution time is a simple matter. Each of

the hypercubes allow users to specify the size of the cube desired. This allocated cube can contain
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all processors of the system or a subset. For the Intel hypercubes the restriction on the size of a

subset cube is that the number of processors (n) in the subset inust be a power of two (n = 2k)

(27:2-4)(6:4). To change the number of processors used all that is needed is to change the size of

the allocated cube. Because only a maximum of 8 processors are available only 4 sizes of cubes are

possible (cube sizes = 1, 2, 4, 8). Since two programs (worker anid controller) are used to solve the

problem a cube size of one is not possible. The cube size of one is used to execute the sequential

version, thus allowing a direct and valid comparison between the sequential and parallel versions

of the software for speed-up analysis.

5.5 Tist Results

The results of executing the software for each of the experiments are contained in the following

sections. The raw data is found in Appendix C. This information is condensed into tables and

graphs. The tables list the relevant data while the graphs are used to show trends and for the

comparisons discussed in the previous section.

5.5.1 Reduction of the Search Space. Two algorithms, one not employing any bounding and

the same aigorithm using a bounding technique were executed. Table 5.2 contains the results of

executing the bounded algorithm, with a recursion depth of three while Table 5.3 contains the

results of the un-bounded algorithm, with the sarn, recursion depith. Table 5.4 contains the

number of nodes, in the search space, which are expanded by each algorithm. The number of nodes

expanded is a measure the "amount of work" performed by each strategy.

Table 5.2. Bounded Algorithm with a Depth of 3 on the iPSC/2
Program Efficiency Timing (seconds) Improvement

Cube Nodes initial
Size Expanded Worker Controller Initialize Route Search Total Speed-up Efficiency

1 7337 ... 7.636 13.431 49207.111 49228.178 -- --

2 7336 0.896 0.408 0.142 18.806 37282.756 37301.704 1.32 0.66
4 6756 0.632 0.835 0.250 19.177 16306.274 16325.701 3.02 0.75
8 7306 0.304 0.969 0.290 19.457 15677.566 15697.313 3.14 0.39
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Table 5.3. Ilecursion Only Algorithm with a DepthI of :1 eo the iPS( '/2

Cube Nodes Prograri Efficiency "liming (seconds)
Size Expanded Worker Controller Initialize Search T'otal

2 7669 0.878 0.450 0.208 37621.7:38 37621.946
4 6577 0.603 0.857 0.401 15622.431 15622.833
8 7338 0.281 0.975 0.306 16084.236 16084.542

Table 5.4. Work Perfornied by the Bounded and Itin-bounded Algorit hms
Nodes Expanded Nodes Expanded

Cube Size (B~ounded) (l'n-bounded)

2 7336 7669
4 6756 6577
8 7306 7338

Figure 5.2 shows the execution times on the iPSC/2. using the same input data, for the

algorithm without a bounding strategy and for the same algorit hm employing bounding. Also the

efficiency of the coit roller and worker tprograms is cal -ulated and are shown in Figure 5.3. It is

interesting to note in the figures that there is very little difference between the two algorithms, bot h

in lprogram elficiency atii~ total execution t ine. Thle exeoition times for each are nearly identical

as are the program efticiencies. The're is also little difference in the anmount. of work performed, the

total number of nodes expanided (Table 5.4), during the searc'h process. It is evident that. no time

or work are saved by incorporating the bounding technique into the search. This conclusion is true

for the bounding technique implemented and for the Air Tasking Orders used. "['his may not be

true of other mission scenarios or aiiot her bounding technique.

•..5.2 Parallel Architecture. To test the effect of changing architectures the software is run

on two hypercubes each based c:: a dlifferent processor. An hntel iPSC/2 and an [ntel iPSC/860

are usedl. "Fables 5.2 and 5.5 contain the results of executing the bounded algorithm, for recursion

depths of three and four, on the il'S( '/2. Tables 5.6 and 5.7 containi the results of executing the

same algorithm, for the same recursion depths, on the iPSC/860.

It appears from Figure 5.,I that th(,re is little" difference between the iPS('/2 and the iPSC/860

running the same program, at least for tlhe total execution t irni. TIhe iPSC/860 is supposed
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Table 5.5. Bounded Algorithm with a l)epth oft1 on the iPSC/2
Program Efficiency Timing (seconds) Improvement

Cube Nodes Initial
Size Expanded Worker Controller litialize Route Search Total Speed-up Efficiency

1 5355 . 7.6.57 68.163 1,15228.101 145303.921 -
2 5354 0.988 0.068 0.180 73.364 137152.444 137225.988 1.06 0.53
4 5210 0.981 0.198 0.148 73.664 45295.759 45369.571 3.21 0.80
8 52,15 0.957 0.442 0.168 73.936 19856.748 19930.852 7.31 0.91

Table 5.6. Bounded Algorithm with a Depth of 3 on the iPSC/860
Program Efficiency Timing (seconds) Improvement

Cube Nodes Initial
Size Expanded Worker Controller Initialize Route Search Total Speed-up Efficiency

1 16021 .. 2.177 5.127 46028.364 46035.668 .....
2 15751 0.875 0.511 0.349 7.511 32636.116 3264:3.976 1.41 0.70
4 15626 0.519 0.912 0.5-7 7.418 17960.518 17968.573 2.56 0.64
8 15893 0.242 0.984 1.199 9.236 16998.520 17008.955 2.71 0.34

to be a faster machine than the iPSC/2, though this does not appear to be the case from the

results. Examining the contents of Table 5.8 shows that the software running on the iPSC/860

expanded nearly twice the number of nodes than the amne software executing on the iPSC/2. This

statement presupposes that the data for the iPSC/2 is correct and the results for the iPSC/860 are

in error. Just. because the software was imnplemented, tested, and debugged on the iPSC/2 does not

guarantee that its results are not in error. The initial thought to the difference was the difference in

architecture granularity, but this is dismissed when looking at the results of the sequential version

(cube size = 1) which show the same phenomenon. Thus there must be a difference in either the

software library routines loaded by the compiler or something to do with the architecture itself.

Additional print statements were included in the software to determine what was happening during

the execution of the software on each machine. The data collected is contained in Appendix D.2.

It is evident fromn the results (Appendix D.2.1) that for certain parents some children are being

Table 5.7. Bounded Algorithm with a Depth of 4 on the iPSC/860
Program Efficiency Timing (seconds) Improvement

Cube Nodes Initial
Size Expanded Worker Controller Initialize Route Search Total Speed-up Efficiency

1 12446 . 2.108 33.228 158901.072 158936.416 -
2 12165 0.988 0.076 0.183 34.807 147856.127 147891.117 1.07 0.54
4 11541 0.982 0.221 0.358 34.913 ,17864.,490 47899.761 3.32 0.83
8 11638 0.95 5 0.503 0.941 37.321 21183.05.1 21221.316 7.05 0.88
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Table 5.8. Expansion on the iPSC/2 and iPSC/860

Depth = 3 Depth = 4

Nodes Expanded Nodes Expanded Nodes Expanded Nodes Expanded

Cube Size (iPSC/2) (iPSC/860) (iPSC/2) (iPSC/860)

1 7337 16021 5355 12446

2 7336 15751 5354 12165

4 6756 15626 5210 11541

8 7306 15893 5245 11638
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Table 5.9. Possible Angles
0
35.26439
45
48.18969
54.73561
60
65.90518
70.52878
90
109.47122
114.09484
120
125.26439
131.81031
135
144.73561
180

accepted as valid on the iPSC/860 while those same children, on the iPSC/2, are deemed as not

valid. This indicates the problem exists somewhere in the routine which validates the children.

Further investigation (Appendix D.2.2) reveals an accuracy problem between the results of the

two machines. It happens that the maximum angle specified is 601 and this is one of the possible

angles. Table 5.9 shows all the possible angles and one of those values is 600. Appendix D.1

has a detailed discussion of how these numbers are obtained. The difference in angle calculation

accuracy between the iPSC/2 and iPSC/860 and the fact that one of the possible angles is the

same as the value being compared to explains the results. The iPSC/860 accepts more children

as valid (its angle is just under 600) than the iPSC/2 (its angle is just over 60'). This means the

search conducted on the iPSC/860 has more children to explore ihan the search conducted on the

iPSC/2 and this is why the iPSC/860 expands more nodes. One solution to this problem is to

round-off or truncate the calculated angle before making the comparison. This approach would

solve the problem regardless of the architecture used. Instead of modifying the code and rerunning

all the test cases, which would have taken many days of execution. a simple test was performed.

The maximum angle allowed is reduced to 590 which results in the same children being rejected

on both the iPSC/2 and the iPSC/860. The angle could have been increased to 61' instead, but
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since the iPSC/860 computer should be faster the test was run on it in order to minimize the time

need to perform this test. Tables 5.10 and 5.11 contain the results of re-running the software on

the iPSC/860 with the maximum angle allowed changed to 59'. Table 5.12 compares the number

of nodes expanded on the iPSC/860, both before and after changing the angle, and on the iPSC/2.

The iPSC/2 results are included since the search space on the iPSC/2, using 600, should be the

same as the iPSC/860 using 590. After setting the maximum angle to 590 the number of nodes

expanded during the search on the iPSC/860 is nearly the same as that on the iPSC/2 than the

when the angle was 600. Comparing the results of tables 5.6, bound-i860-d4, bound-i860-d3-59,

and bound-i860-d4-59 it is observed that the number of nodes expanded is reduced by a factor of

about, two. The first inclination is that the time should also be reduced by two, that if half the

work is performed then half the time is used. This would indicate a linear relationship, but the

results show that the execution time is reduced by a factor of about four. A careful analysis of the

problem reveals that this is correct. The problem space is O(n) where n is the size of the open

list, those routes being explored. If there is a linear relation then the time complexity would also

be O(n). There are n routes placed into the open list. Since the open list is a priority queue an

insertion must check, worst case, all n routes before finding where in the queue the route being

inserted belongs. Thus for each route the time complexity is O(n) and since there are n routes

the overall time complexity is O(n 2 ). Therefore if the problem space is reduced by two the time is

reduced by four, which is observed. This would indicate that. if a better branch and bound routine

were used then a quadratic reduction in execution time would be realized. Figure 5.5 shows the

execution times for each scenario on each machine. In looking at the results in Table 5.12

some interesting things are occurring for a cube size of 4. For a depth of 3, the iPSC/860 software

Table 5.10. Angle = 59.0 & Depth = 3 on the iPSC/860
Program Efficiency Timing (seconds) Improvement

Cube Nodes Initial
Size Expanded Worker Controller Initialize Route Search Total Speed-up Efficiency

1 6954 -- - 5.079 3.188 11350.693 11358.960 - -
2 6817 0.893 0.413 0.484 6.013 8441.781 8448.278 1.34 0.67
4 7374 0.571 0.865 0.582 5.661 4765.459 4771.702 2.38 0.60

5-18



Table 5.11. Angle = 59.0 & Depth = 4 on the iPSC/860
Program Efficiency Timing (seconds) Improvement

Cube Lodes Initial
Size Expanded Worker Controller Initialize Route Search Total Speed-up Efficiency

1 5354 - - 2.242 16.055 34602.304 34620.600 --

2 5353 0.986 0.072 0.323 18.438 32698.327 32717.088 1.06 0.53
4 4284 0.981 0.193 0.549 18.479 8269.536 8288.564 4.18 1.04

Table 5.12. Effect of Changing the Maximum Angle Allowed
iPSC/860 iPSC/2

Angle = 60.0 Angle = 59.0 Angle = 60.0
Cube Size Depth = 3 Depth = 4 Depth = 3 Depth =4 Depth =3 Depth =4

1 16021 12446 6954 5354 7337 5355
2 15751 12165 6817 5353 7336 5354
4 15626 11541 7374 4284 6756 5210
8 15893 11638 - - 7306 5245

expanded about 400 less nodes except for a cube size of 4 where it expanded about 500 more. For

a depth of 4, each machine expanded nearly the identical number of nodes except again for a cube

size of 4 where the iPSC/860 expanded nearly 1,000 less nodes. Why this is occurring is not clear.

The first inclination would be that the granularity of the machines is causing this phenomenon,

but it is possible that there are other differences in the software, like the accuracy problem, which

are being manifested in these results.

In looking at the speed-up results in Figure 5.6 for a recursion depth of 3 there appears to

be little speed-up when increasing the size of the cube from 4 processors to 8 processors. The

communication bottleneck occurring at the controller processor would explain this phenomenon.

This matches the conclusions of Abdelrahman (1:1496), Garmon (22:6-8), and Rottman(7:105).

For a recursion depth of 4 near linear speed-up is achieved. This is because the number of messages

being sent to the controller processor during a time period is decreased (i.e. granularity increased).

The controller processor is able to process messages so as to keep the worker programs idle for

shorter periods of time. As the number of worker processors is increased the efficiency in speed-up

should begin to decrease. The same results for a recursion depth of 3 should be seen for a recursion

depth of four as the number of processors used is increased. Why is super-linear speed-up seen on

the iPSC/860 (angle set to 59 with a recursion depth of four) for a cube size of four? The sequential
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Figure 5.5. Effect of Changing the Maximum Angle Allowed

versions for depths three and four were executed at the same time. Since all I/O goes through the

host processor (SRM) if multiple nodes need to perform an I/O function then one performs its

operation while the others must block and wait for their turn. Perhaps this occurred for the depth

of four software causing its execution time to increase. Since this value is in the nominator of the

speed-up equation, increasing the sequential execution time increases the speed-up value. This is

a possibility, there may be others.

5. .5.3 Number of Processors Used (Granularity). The effect of changing the size of the cube

used is examined as is changing the depth of the recursion search for h'. The effect on timing is

shown in Figure 5.7 while the effect on program efficiency is shown in Figure 5.8. It is interesting to

note from Figure 5.7 that when increasing the cube size from 4 to 8 caused an increase in execution

time for a recursion depth of 2, but that the execution times continued to decrease with an increase

of cube size for both a depth of 3 and 4. The results shown in Figure 5.8 give a clearer understanding

of what is taking place. For a depth of 2, as the cube size increases the efficiency of the controller
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program also increase, to a point, while the efficiency of the worker program decreases. As the

cube size increases the number of worker programs increases which results in an increase in the

number of messages being sent to the controller processor. The controller is spending most of

its time busy handling all this message traffic and the worker programs are spending more time

waiting for their requests to be answered. This is evident in Figure 5.8 by the high efficiency of

the controller program which increases as the cube size increases. The average worker program

efficiency decreases as the cube size increases. Thus, as the cube size increases the controller node

is busier and the workers spend more time being idle. As the depth of the recursion is increased

the time between sending messages increased, thus the granularity of the problem is increased.

This is because as the recursion depth is increased the search space is enlarged thus resulting in

an increase in the time to calculate h' which means the time between communication is ii~creased.

The communication bottleneck at the controller processor impacts the overall execution time. As

the controller's efficiency increases it is desired that the worker's efficiency not decrease resulting

in a decrease of the overall execution time. Based on the results for a depth of 2 (Figure 5.7) it

is anticipated that for the other depths are the cube size is increased eventually a point will be

reached after which the execution time will increase. This is the point where the impact of the

communication bottleneck is such that the software actually requires more time to find a solution.

5.6 Summary

This chapter describes the metrics used to analyze the software developed to solve the mission

routing problem and its execution on a parallel computer. These metrics consist of the number of

nodes expanded and timing information. Timing is used to calculate the efficiency of the controller

and worker programs, compare total execution times, and determine speed-up. Also presented

is the input data (terrain, radar, and ATO). Experiments were developed and discussed which

investigated the execution of the software in a parallel processing environment. The results obtained
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are presented, using tables and graphs, along with analysis. Chapter VI presents an overview of

the analysis, suggested improvements to the software, and recommendations for further research.
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VI. Conclusions and Recommendations

6.1 Introduction

This research examines the feasibility of using a parallel processing environment in selecting

mission routes. Selecting a route can be viewed as simply finding the optimal path between the

starting point and the target based on some criteria. The problem of finding the route can be

reduced to the problem of performing a search within the domain of the threat environment. The

search process is combinatoric because a number of parameters such as threats, fuel consumption,

time on target, target locations, listance flown, and refueling points must be considered. A par-

allelized A* search algorithm was used for the search strategy. A number of parameters, such

as bounding the search space, architecture, and problem granularity, are changed to study their

impact on the execution time.

Chapter V presented the experiments, the results obtained, and the associated analysis. This

chapter presents a detailed overview of those results and relates them back to the objectives of this

research effort as set forth in Chapter I. As with any software development there are always ways

to improve the software, section 6.3 identifies areas of improvement for the software. Research is

an on-going effort as one problem is solved, or answered, more questions arise which need to be

researched further. It is the same with this research effort and section 6.4 discusses areas which

require further investigation.

6.2 Interpretations of Results

The last chapter presented the analysis of the results obtained. The following sections present

an overview of the analysis and the conclusions drawn.

6.2.1 Reduction of the Search Space. The search space was bounded by finding an initial

best cost, using a depth-first greedy approach, and through the use of an altitude block. The cost
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of routes being inserted into the open list are compared to the best cost and only those whose

cost is less than the best are inserted. The altitude block specifies the minimum and maximum

altitudes at which an aircraft may fly for the mission. This information is used when determining

the next locations of a route. There is very little difference in the number of nodes expanded and

the execution times between the algorithm using the branch and bound strategy and the one not.

using it. No time or work were saved by incorporating the bounding technique into the search.

This does not mean that bounding the search has no effect, it, does mean that for the bounding

technique implemented and for the test missions used no savings was realized. Reducing the search

space results in a decrease of the execution time as was found in testing changing the maximum

allowable angle.

At first it was thought that reducing the search space would result in a linear decrease in

the execution time, but this was not the case. The thought was that each route being expanded

required about the same amount of time and that for each route eliminated a constant amount

of execution time would likewise be eliminated. This assumes a linear relationship between the

number of routes explored and the time to find a solution. This false assumption can be made

when the complexity of the problem is not analyzed. When testing the effects of changing the

maximum change in angle on the iPSC/860 the search space was reduced by about a factor of two

and the execution time by about four. Since the open list contains n routes, there are n possible

routes which may need to be explored. This results in the problem requiring C. n space where C is

the amount of space required for a single route. Thus, the problem has a space complexity of O(n).

Since the open list is a priority queue, an insertion must check (worst case) all n routes before

finding the location in the queue where the route being inserted belongs. Thus for each route the

time complexity is O(n) and since there are n routes the overall time complexity is O(n0).

Bounding the search space requires time, thus there is a trade-off between the time spent

bounding the search and the time spent exploring "bad" nodes. The results of the experiment on
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the iPSC/860 show that for a reduction in the search space a quadratic decrease in the execution

time can be realized. Therefore the extra computation time of bounding the search is out-weighed

by the reduced time of searching the "extra" nodes.

6.2.2 Metrics. Metrics are used used to analyze the performance of the software. In analyz-

ing the results of the iPSC/860 one learns the importance of selecting the correct metrics. If only

execution time had been used then the conclusion would have been drawn that for this problem

there is no difference between the iPSC/2 and iPSC/860. Using the number of nodes expanded

metric revealed that the searches progressed differently. This metric indicated a difference in the

executable code executing on each computer. The difference was traced to the calculation of the

angle between the direction vectors. Metrics must be selected with care. A thorough understanding

of the problem and the algorithms used is necessary when selecting metrics. The use of extraneous

metrics, those which provide no useful or additional information, is not desirable. Likewise, the

selection of all useful metrics is desirable so as to not, miss any important information.

6.2.3 Parallel Archilecture. To test the effect of changing architectures the software is exe-

cuted on an Intel iPSC/2 and iPSC/860. The similarities and differences between the two machines

was presented in the last chapter (section 5.4.3.1). The sanme software was placed on each hypercube

with the difference being the compiler used. The iPSC/860 uses a cross-compiler to compile and link

code to be executed on its node processors. The results of executing the code show similar number

of nodes expanded and execution times. This was not logical since the iPSC/860 is reported to be

a faster machine than the iPSC/2. After further investigation (Section 5.5.2 and Appendix D.2.2)

it was found that a difference in the value of an angle calculation caused the work and times to be

similar. This indicates that one can not blindly port code from one computer to another. This is

true even when there are no compilation or run time errors encountered. The person porting the

code must have a through understanding of the algorithm and the subtle differences between the

two computers. Also tests must be run to ensure the results are correct, after porting the software.
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When looking at the execution times the iPSC/860 appeared to be just as fast as the iPSC/2.

but this was not true. Once the accuracy problem was identified an additional experiment was

conducted. The software on the iPSC/860 was modified so the same children accepted on the

iPSC/2 would also be accepted on the iPSC/860, likewise the same ones would be rejected on both

machines. The results of this experiment reveal that indeed the iPSC/860 is a faster computer.

In looking at the execution times for a depth of 4. each computer expanded almost the identical

number of nodes, the iPSC/860 was a factor of 4 faster than the iPSC/2. Since each has the

identical communication network, the difference must be in the processors. The. clock speed on

the iPSC/860 is a factor 2.5 faster, this alone does not result in the speed-up achieved. The rest

of the speed-up must be in the microprocessor architecture. The iPSC/860 uses a RISC processor

along with other hardware techniques to increase the computational speed of computers; such as,

instruction pipelines and floating-point units. The iPS('/2 uses a (1ISC processor with pipelines

and floating-point units. Thus, the main difference betwetii the Iwo processors is the time needed

to execute a single instruction. There is not, enough information to determine the impact of the

different math coprocessors on the execution time.

6.2.4 Granularity. By increasing the recursion depth the computation time is increased

while the communication time remains the same, thus the granularity of the worker program in-

creases. Likewise the granularity can decrease by decreasing the recursive search depth. Because

of the potential communication bottleneck at the controller processor, increasing the granularity

reduces the number of messages received by the controller during a time unit. This means that

the workers are spending more time processing a given route, but the controller is also able to

keep up with the message traffic. Thus t-he granularity of the worker progranis impacts the overall

execution time. As the granularity increased the execution time also increased for a given cube

size. As the cube size increased the difference in execution time between the different granularities

decreased. Thus, for a small cube size the greater recursion depth resulted in a greater execution

"6-4



time. Figures 5.7 is a good example of the effect changing the problem granularity and the cube

size have on the execution times.

As the cube size increased the execution time of tie greater recursion depth approached

that of the lesser recursion depth. In fact on the iPSC(/2 with 8 nodes the recursion depth of 2

had a greater execution time than a recursion depth of 3. Likewise the execution time using 4

nodes was less than the execution time using 8 nodes. This indicates that the program granularity

needs to be match to the parallel computer. This algorithm can not be blindly scaled to larger

parallel computers. Again this has to do with the trade-off of more computation time per route

being expanded versus the communication bottleneck at. the controller processor. It is important

to examine the granularity of the implemented algorithm and match it to the computer system.

What will happen when the cube size is increased? If the program granularity remains the

same then the execution time decreases as the cube size increases. This is true up to a point

after which the execution time increases. This is because of the communication bottleneck at the

controller processor. The bottleneck reachs a point, where the controller program has too many

messages which need to be processed before the work requests can be handled. Even though the

data collected for recursion depths of 3 and 4 show the execution time to be decreasing as the cube

size increases eventually they too reach a point. at which the executrion tiiie begins to increase.

6.3 Further, Improvements to the Software

As with any software package there are always ways to improve the software. The goal of this

research was not to produce an operational mission routing software package, but to determine the

feasibility of using parallel processing to reduce the time needed to select a route. The software

developed ii support, of this research effort made use of simplifying assumptions. Also because of

time constraints portions of the code were not fully developed. The following sections discuss sonie

of the proposed improvements to the code to make it more efficient, flexible, antd iiore user-friendly.
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6.3.1 Error Checking. The Air Tasking Order (ATO) data was known to be correct and

for this reason no error checking was implemented. This assumption could be made because the

user, namely this author, ensured that correct data was entered into the ATO file. This is not

necessarily a good assumption as others may produce ATO files and enter them into the system.

A simple error checking scheme needs to be incorporated into the software. This error checking

should include:

"* the x, y, z coordinates are within the bounds of the terrain and radar matrices,

"* the terrain and radar matrices are the same size,

"* the z coordinate for the starting and goal locations are above the ground,

"* the minimum value of the altitude block is less than or equal to the maximum altitude block

value,

"* negative values are not specified, and

"* the altitude type (AGL/MSL) is valid.

These checks are fairly simple to make and ensure the integrity of the parameters used during the

search process. They ensure the search can progress c,,rrectly and protect the user from entering

blatantly incorrect information.

6.3.2 Location Representation. Locations are specified using an x, y, z coordinate system.

The x, y, z values corresponded to the location's position within the terraini matrix. This requires

the user to have an thorough understanding of the terrain data. The user must know the area the

terrain file includes and the reference point for the terrain matrix. This is not a realistic expectation

of a user. A better means to specify a location is to use its longitude and latitude coordinates.

This is most likely the form the user will have and this divorces the user from a knowledge of the

terrain data. The terrain data would include the latitude and longitude of its reference point; this

is what the Defense Mapping Agency (DMA) digitized data base uses. The software could convert
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any longitude/latitude to the location within the terrain data. The altitude is already specified in

feet versus using the z coordinate, so no change is necessary for this parameter.

6.3.3 Load Actual Terrain and Radar Data. As stated previously the routines to include

actual DMA were not incorporated because of time constraints. Thus, to provide for a more

realistic search these routines need to be used. Use of these routines allow a search to be conducted

through an actual terrain. The loading of actual data by the system would require a better model

of detection be used. There are system available, such as the Improved Many-On-Many (IMOM)

which model radar coverage (2). Incorporating these systems produces a realistic terrain and threat

environment through which a mission is flown.

6.3.4 Load Aircraft Information. The maximum change in direction was set to 600. This

is regardless of the aircraft and the terrain resolution. Like the maximum change in direction,

the maximum combat radius is also hard-coded in the software. The software should be more

flexible and realistic. The aircraft characteristics (i.e. minimum turn radius, maximum climb/dive

rates, combat radius, etc.) should be stored in a file and loaded at execution time. This allows

the selection of routes for multiple types of aircraft. This could be taken one step further by

incorporating a flight dynamics model into the search process.

6.3.5 Route Representation. Presently a route is represented by each location along the

route. This requires large memory allocation since the route data structure is uses in the open

list as well as many times during the expansion of a single route. This also increases the size of

messages being sent between nodes, thus increasing communication time. A better way is to keep

only the turn points, those places where the aircraft changes direction. Since directional vectors are

used to determine valid children, this information is already available. The software simply needs to

compare the old directional vector with the new one. If they are the same then simply remove the

parent location with the child location. If they are different then the aircraft has changed directions
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and the child location is appended to the route. This produces a route description which is easier

to understand, minimizes the information being conveyed, and makes it more realistic. Presently

pilots keep track of turn points when planning and flying mission are the turn points and target

locations and not all the points in between.

6.3.6 Recursion Efficiency. The present implementation of the recursion routine is ineffi-

cient. As the recursion search progresses much work is duplicated. As new children are included

no check is performed to see if that state, location and direction vector, had already been explored.

This is similar to the open list problem of having duplicate states. As the recursion routine is imple-

mented states may be explored many times trying to determine an admissible h'. This duplication

of work results in a longer execution time. A data structure could be used to keep track of each

state encountered during the recursion search and a check could be made to determine if a state

had been explored and what its cost was. There is a trade-off with this approach since it takes

more time to explore each child, but the number of children being explored should be reduced.

Which method results in the lower execution time is not clear. It is expected that spending the

time eliminating duplicate work does because of the combinatoric property of the search process.

As seen in the results of eliminating some of the search space, changing the maximum angle on the

iPSC/860, a decrease in space produced a quadratic decrease in execution time. It is assumed that

similar results may be obtained by eliminating work duplicated during the h' calculation.

Another technique which can be employed is to send the route being explored each time the

recursion search "bottoms out." This is not instead of the original parent/child combination being

explored. The original pair still needs to be sent since the recursion routine is not determining the

optimality of the path, it is just determining the actual minimum cost to a specific depth. It is still

possible that another path may result in an overall lower cost. What is desired is the global best

while the recursion search produces a local best. It is possible that the search process continues

down the same route as the recursion search. Thus, sending this route to the controller would
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eliminate duplicate work. This strategy would increase the message traffic so there is a trade-off

between eliminating possible duplicate work and reducing the efficiency of the worker programs.

6.3. 7 Initial Route. A logic error is included in the finding of the initial route which is used

to bound the search process. This logic error does not effect tile selection of tile initial only tie

time necessary to find the route. In examining the structure chart for the worker progra~i (Figure

4.3) one observes that the routine to find the initial route calls the routine which calculates costs.

This was done to eliminate duplication of code. Unknowingly this affected the time to find the

initial route. The calculate costs routine calls the routine to calculate h' which uses the recursion

search routine. Thus, as the depth of the recursion routine is increased the time needed to find the

initial route increases. Either the routine to find an initial route should call a separate routine to

update costs or the calculate costs routine needs to be modified to eliminate this problem.

6.3.8 Accuracy of Calculations. As discussed in the analysis of the results, an accuracy in

the arc cosine function effected the amount of work performed. The code as implemented relied

on the accuracy of the calculations to be correct and it was determined that this was incorrect. A

simple mechanism of having the software force the desired accuracy should be employed. Simply

truncating the calculated value by storing the floating point, double precision, result into an integer

or floating point, single precision, variable could be used. Another possible method, though more

complex, is to statically determine all the possible angles and check them against the maximum

change allowed. If there is a match then the maximum change could be modified. This method is

more complex than the first method and almost as flexible. The decision needs to be made as to

the desired accuracy of ascertaining if a location is valid. This decision dictates the method and

data structures used.

6.3.9 Reporting of Results. The software can be modified to make it, more user-friendly by

determining both the ingress and egress routes and by providing the pilot, with multiple routes. A
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single route is found which could be either an ingress or egress route, but not both. The restriction

is usually placed upon the ingress and egress routes that they are not to have common locations

other than the target and base. Once a solution is found the search could continue finding other

solution routes, saving them in a new data structure. The pilot would be given each of these routes.

This allows the pilot to select an ingress and egress route and to determine alternate routes should

the need arise to deviate from the planned route. This would provide the pilot greater flexibility

when planning a mission.

6.4 Recommendations for Further Research

Research is a never-ending process. As a research project progress questions are answered,

new insights are gotten, and new facts or principles are discovered, but at the same time new

questions arise. It is these questions which perpetuate the research process. This research effort

is no different from any other. Questions have been posed and answered and new questions have

arisen. Because of time constraints only so many questions could be investigated. Thus, there are

still questions which need to be investigated. This section posses some of the questions, which have

arisen during this effort, needing further research. Some areas may already be in the process of

being researched by other organizations.

6.4.1 Local and Global Bests. All expanded routes were sent back to the controller program

for inclusion into the open list. The controller determined whether the route was inserted into

the open list by comparing its cost to the cost of the best solution. One area which needs further

investigation is if each worker program should use a local best solution when determining whether

to send a route back to the controller. This strategy would reduce the message traffic, thus reducing

the work load of the controller processor. The controller would still keep the global best and use

this information when inserting routes into the open list. This may not be a viable option for this
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problem since most of the time a single solution was found at which time the search terminated, but

it would still reduce communication between the worker processors and the controller processor.

6.4.2 Centralized versus Distributed Open List. The design and implementation was based

on a centralized open list. Garmon examined the differences of a parallelized A* search strategy

using a centralized versus a distributed open list when solving the Traveling Salesman Problem

(TSP) (22). He determined that for larger size parallel computers the distributed open list was

more efficient. Abdelrahman and Mudge also drew the same conclusion (1:1497). Garmon provides

some guidelines when making the decision what type of open list implementation to employ on

either an iPSC/2 or an iPSC/860 (22:6-17).

6.4.3 Parallel Search Strategy. The main purpose of this research effort was to determine

the feasibility of using a parallel processing environment to solve the mission routing problem within

a reasonable amount of time. The A* search algorithm was selected for its simplicity, also because

a parallelized A* algorithm had been implemented in previous research at the Air Force Institute

of Technology. The implemented A* produced long execution times. One area of further work

is to examine the implementation of the A* algorithm and determine if they can be made more

efficient, such as faster/better management of the open list and faster worker programs. There

are other search strategies which may be more efficient in solving the mission routing problem.

Research needs to be conducted into the parallelization of other search strategies, such as dynamic

programming, to determine which is "best" to apply to this problem.

Another area of research is the direction of the search. What, is meant by this statement is the

definition of the start and goal states. Beginning the search at the base location and terminating

at the target location may not be the most efficiency method. This is because of the multicriteria

nature of the mission routing problem. It is believed that the start of the search should begin

in the area which contains the heaviest weighted parameters whose values are the greatest. For

instance if detection is given the highest weight factor then the area to begin would be the target
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area because that is usually where the highest concentration of radar coverage is located. Selecting

a single parameter may not be the best method either, but perhaps a combination of parameters

will determine the beginning and ending states of the search. By beginning in the area of greatest

criteria weighting it would help to ensure that if a beam reduction takes place on the open list then

the probability the optimal route is deleted would be reduced.

Changing the search criteria during the search process is another area of mission routing

which needs to be studied. As implemented the search using the same heuristics and search process

throughout the entire search. With the weighting factors used once a route is found which is no

longer within the enemy's radar coverage there is little to distinguish one route from another. Thus

many routes appear to be just as good as another and the search space increases. One way to

correct this occurrence is once past the enemy's radar coverage use a straight-line route similar to

the initial route found for bounding purposes. Then just "walk" along the route making sure it is

"free" of radar detection (or other criteria). Another possible method is to change the weighting

factors of the criteria during the search. Thus, once past the enemy's radar coverage change the

weighting so that in this case distance is weighted greater than detection.

The addition of other criteria such as jamming, aircraft orientation, radar cross section (RCS),

fuel consumption, and so forth needs further research. The determination of the impact some of

these criteria have upon the success of the mission are beyond the abilities of a pilot. With the

advent of "stealth" or low-observable aircraft the detection by enemy has taken on new dimensions.

No longer can a simple probability of detection be calculated based on radar equations. The RCS

of an aircraft must first be modeled, next the orientation of the aircraft with respect to each of

the radar sites must be determined, and then can the probability of detection be calculated. This

further refined criteria adds additional complexity to an already complex problem. Also as the

number of criteria added to the search the complexity of the problem, search, and software also

increases. This can result in an increase in execution time.
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6.4.4 Monitoring of the Search. The method used to monitor the search progress is though

the use of print statements. This information is difficult to comprehend as it applies to how the

search is progressing. This information is important in evaluating the effectiveness of the heuristics,

weighting factors, and search algorithm in general. There are other methods available to convey this

information such as search graphs and display of the terrain overlaid with routes being explored.

The AFIT Algorithm Animation Research Facility (AAARF) already has the ability to display

search graphs though modification of the routines may be needed to allow them to work properly

with this problem. There are routines available to display terrain data though additional routines

may need to be d&signed and implemented to overlay the routes being explored. Research in this

area would determine the best method to monitor the search process and the way this information

is to be given to the user, manely the developer.

6.4.5 Reporting of Results. An area associated with monitoring the search is how to report

the results of the search. The implemented system simply displays the x, y, z coordinates in order.

This requires the pilot to transpose this information back onto a terrain map. Research is being

conducted into many aspects of virtual reality. A possible use would be to transfer the terrain,

detection, and solution information to such a system and allow the pilot "watch" the mission being

flown.

6.4.6 Architectures. Even though two different processor architectures were examined each

machine had the same communication network. Other types of communication networks, such

as the mesh, need to be explored. The type of communication network employed can effect the

execution times of the software. A comparison of the architecture and the search algorithm used

needs to be examined. The operation of the search algorithm is dependent on the architecture,

thus one algorithm may run faster on one architecture while another algorithm is better suited

for another type of architecture. Table 6.1 lists characteristics of some parallel computers. The

observations made in section 6.2 must be kept in mind when investigating these other parallel
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Table 6.1. Parallel Computer Characteristics
Interconnection

Network Memory Maximum
Computer Classification Topology Topology Processors
CAMPUS/800 MIMD 2-Level Shared/ 800

Crossbar Switch Distributed
KSR-1 MIMD Hierarchy of Rings Shared 1088
iPSC/860 MIMD Hypercube Distributed 128
MasPar MP-2 SIMD 2D Mesh Shared 16384
nCUBE 2 MIMD Hypercube Distributed 8192
Paragon MIMD 2D Mesh Shared/ 4096

1_ 1 1 Distributed

computers. The program granularity could be changed, thus the execution time is dependent on

both the number of processors and the program granularity. This allows the implemented software

to be matched to the parallel computer.

Increasing the computational speed of the computer is an on-going research effort. There are

a number of hardware techniques in use to increase the computational speed of computers; such

as, reduced instruction set computers (RISC), instruction pipelines, vectorization of instructions,

functional units, and parallel processors. If a mission routing system is to support real-time, on-

board the aircraft, systems then not only are faster, more efficient algorithms needed, but also

faster architectures.

6.4.7 Expert Systems. The use of expert systems on-board the aircraft are on-going research

projects sponsored by the Air Force. These types of systems hope to remove many of the tasks

from the pilot onto the computer thus allowing the pilot to concentrate on the mission and other

tasks. Issues which need to be addressed include: how does the system monitor the flight, how

does the system detect changes in the environment (i.e. new threats, planned threats no longer

present), how does the system determine if the flight path needs to be changed, and what does the

system do if changes are not necessary. The expert system could also be employed in the selection

of routes before the mission is flown. As suggested earlier the weighting factors and heuristics could

be changed during the search process and this would be an excellent, area to use an expert system.
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Also an expert system could monitor the routes being generated and determine the feasibility of

those routes. For instance a route being explored may remain at a constant altitude, but a pilot

may not what to remain at a constant altitude even though that is the best route. The expert

system could also compare the routes to previously flown routes. This information could be used

to prevent the same routes being flown a number of times and thus having the enemy expecting an

aircraft even though there is no known radar in the area.

6.5 Summary

This research examines the feasibility of using a parallel processing environment in selecting

mission routes. The research effort designed and implemented a parallelized A* search algorithm.

Software engineering principles of top down design, modularity, software reuse, design specification

language, and structure charts are used. This helped to reduce the time needed to design and

implement the algorithm while also making the maintenance of the software easier. This also

makes it easier to understand for those who review and use the algorithms in the future.

Speed-up is realized when the software is executed on parallel processing computers. A version

of the software was developed to run on a single processor allowing a valid comparison to be made.

From the results found in Chapter V and the discussions in this chapter and Chapter V the parallel

versions had lower execution times. The amount of speed-up is dependent on the granularity of

the software, the parallel computer, and the number of processors used. The impact the number

of processors has on the total execution time is dependent on the granularity of the software. It

is important to match these parameters in order to realize the minimum execution time. The

software executing on the iPSC/860 had an execution time about 75% less than the the iPSC/2

when performing the same amount of work. It is feasible to use a parallel computer in selecting

mission routes and more research is needed in this area; therefore, areas needing further study
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are discussed. Also since time constraints did not allow a fully implemented system, suggested

improvements to the software are presented.
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Appendix A. Source Code Listings

A.1 Parallel Version

A.1.1 Host Program

-- DATE: 23 Oct 92
-- VERSION: 3.0

-- TITLE: Parallel Mission Routing Host Process --

-- FILENAME: HOST.C

-- AUTHOR: Capt James J. Grimm II
-- COORDINATOR: R. Norris
-- PROJECT: Thesis Research Project --

-- OPERATING SYSTEM: System V

-- LANGUAGE: C
-- FILE PROCESSING: Compile and link with stdio.h and path.h --

-- FUNCTION: This program acts as the interface between the programs--
-- executing on the hypercube and the user. It gets the --

-- file names from the user, then it loads the control --

-- and worker programs onto the appropiate nodes of the --

-- hypercube. After sending the file names it waits to --

-- receive the solution from the controller node, along --

-- with timing information. --

-- HISTORY: 3.0 Modified by Capt James J. Grin II for the Mission --

-- Routing Problem.
-- 2.0 Modified by ILt Michael S. Rottman for Travelling --

-- Salesman Problem
-- 1.0 Written by Capt Rick Mraz for Deadline Job --

-- Scheduling Problem --

* Header Files *
e*eeeee**e*eee************eee*eeeee****eee*e**eeeee/**

#include <stdio.h> /* Standard I0
*include "path.h" /* Data structures file S/

/*e*e*e*eeeeeee*eeeeee*eeeeeeeeeeeeeee*****e*******e*e***e

* Global Variables *

char mission[lO]; /* Mission designator *1

Main Program

main 0
{
int dim, /* Cube dimension SI

i, k, /* Counters */
num.expanded, /* Nodes sent to processors e/
total-expanded, /* Total nodes expanded
node-expanded; /* Node expanded by a processor */

long init-time, /* Initialization Time S/
init.path.time, /* Time to find initial route 0/
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search-time, /* Time performing expansions c/
runtime; /c Execution time from start c/

float control-efficiency, /* Efficiency of the controller c/

amt-uork, /c Amount work of each processor c/
total-work; /* Total work performed

PATH best; /* Global Best Solution

char terrainfile[20], /* File containing terrain data c/

ATOfile[20], /* File containing Air Tasking Order c/

planefile [20], /* File containing aircraft info */

radarfile[20]; /* File with radar detection data c/

FILE *fATO, efopenO;

* BEGIN Processing *

setpid(HostYPID);

/* Get dimension of cube and name of data files

dim = numnodesO;
printf ("\n\t PARALLEL MISSION ROUTING PROBLEM \n");
printf ("\n\t A* USING CENTRALIZED LIST \n");
printf C' \tccccccccccc*ccccccccc*ccccccccccc*c*\**);

printf ('\nEnter name of file containing the terrain data: ");
scanf ("Ca", terrainfile);
printf ("Enter name of file containing the radar data :
scanf ("%4", radarfile);
printf ("Enter name of file containing the Air Tasking Order (ATO): ');
scanf ("%s", ATOfile);

/* printf ("Enter name of file containing the aircraft information: ");

scanf ('Is", planefile);

/* Load the Controller process to node 0 and the Worker process to thec
/* other nodes, then send out the file names to all the nodes. */

load ("worker", ALL-NODES, NODEJPID);
killproc (CONTROLLER, NODEPID);
load ("control", CONTROLLER, IODEPID);

csend(TERRAILFILE, terrainfile, sizeof(terrainfile), ALLI.ODES, NODEPID);
csend(ATOFILE, ATOfile, sizeof(ATOfile), ALL-NODES, NODEPID);
csend(RADAR_FILE, radarfile, sizeof(radarfile), ALLNODES, NODEPID);

/* csend(PLAIEEFILE, planefile, sizeof(planefile), ALLNKODES, NODEPID);

printf ("\n\nWaiting for results .. .\n");

/* While waiting get the mission designator from the ITO file c/

fATO = fopen (ATOfile, "r");

facanf (fATO, "%s", mission);

fclose (fATO);

/*Io, wait for results to be returned by the controller node */

crecv (BEST-TYPE, Abest, sizeof(best));

crecy (TIME-TYPE, Ainit-time, sizeof(init-time));
crecy (TIME.TYPE, Ainit.path.time, sizeof(init.path.time));
crecy (TIME-TYPE, Asearch-time, sizeof(search-time));
crecv (TIME-TYPE, &run-time, sizeof(run.time));
crecv (TIMRETYPE, &control.efficiency, sizeof(controlhefficiency));
crecy (NUMTYPE, tnum.expanded, sizeof(num.expanded));
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total-work = 0.0;
total-expanded = 0;

for (i = 1; i < dim; i++)
{
crecy (WORK-TYPE, kamt-work, sizeof(amt-eork));
total-work += amt.work;

} /* end for */

for (k =1; k < dim; k++)
{

crecv(EIPAIDED, &node-expanded, sizeof(nodeoexpanded));
total.expanded += nodeexpanded;

} /* end for */

total-work /= (dim - 1);

/* Print the best cost route */

print.route(best);

printf("\n\t *** Timing Information ***\n\n");
printf("Initialize = %9.3f (sec) \t Find Initial Route = %9.3f (sec) \n',

(float)init-time/1000.0, (float)init.path-time/1000.0);

printf("Searching = %9.3f (sec) \t Total Execution = %9.3f (sec) \n\n",
(float)search-time/1000.0, (float)run-time/1000.0);

printf("Average worker node efficiency %5.3f\n", total-work);
printf("The controller efficiency was %5.3f\n", control-efficiency);
printf("** %d nodes sent to processors \n", num-expanded);
printf("** %d total nodes expanded \n\n", total-expanded);

waitall(ALLRODES, NODEPID);
killcube(ALLODES, NODEPID);

relcubeO;
/* end host */

-- Subroutine PRINT ROUTE
-- Passed: best - best route --

-- Returns: none

-- Function: Prints out the best route --

print-route(route)
PATH route; /* Route to print
{

int i, /* Loop counter 5/

num; /* Number of nodes in route */
US x, y, z; /* Location of each node

float miles-flown; /* Distance in miles flown */

printf("\n The Beat Route for mission %s is:\n", mission);
printf(" x y z \v");

num = route.number;
for (i = 1; i <- num; i++)

{

x = route.x[i];
y = route.y[i];

z = route.z[iJ;
printf(" %3d %3d %3d\n", x, y, z);

} /* end for */

printf("\n For a total of %d entries in the route \n", nun);
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miles-flown = route.distance / 5280.0;

printf("\n At a distance of %f (%6.2f miles)\n", route.distance, miles-flown);
printf("\n With a radar cost of %f \n", route.radar);
printf("\n And a computed cost of %f \n", route.g);

I /* end print-route */

A.1.2 Controller Program

-- DATE: 23 Oct 92
-- VERSION: 3.0

-- TITLE: Parallel Mission Routing Controller Process --
-- FILENAME: CONTROL.C
-- AUTHOR: Capt James J. Grimm II
-- COORDINATOR: R. Norris
-- PROJECT: Thesis Research Project --
-- OPERATING SYSTEM: System V
-- LANGUAGE: C
-- FILE PROCESSING: Compile & link with host.c, stdio.h, and path.h --
-- FUNCTION: This program manages the centralized open list for an --
-- parallelized A* search algorithm. An intial route is --
-- requested from the workers to be used to bounded the --

-- the search. The program loops, performing management --

-- actions, until the open list is empty and no nodes are --
-- working and no messages are waiting to be read in. --

-- If the open list is not full and expand messages are --

-- waiting then a loop is performed to read in all the --
-- expand messages until the list is full or there are no --

-- more expand messages. The next loop reads in all the --

-- requests for work messages. The last loop removes the --
-- route from the front of the open list and sends it to --
-- the first processor tagged as available. Once done the--
-- solution along with other processing information is --
-- sent to the host program and a message is sent to the --

-- �orker programs telling them to exit. --

-- HISTORY: 3.0 Modified by Capt Grimm for the Mission Routing --
-- Problem
-- 2.0 Modified by iLt Rottman for TSP --
-- 1.0 Written by Capt Mraz for Deadline Job Scheduling --

/saesaaaaaaseae**¢ee*aaaaaaaaaaaaaaasaasaaaaaasasss

* HEADER FILES *

*include <stdio.h> /* Standard 10 '/
*include "path.h" /* Data structures file

/*asaasaa**eaaaaaaasasss*asssaasa*ssaasaaaaasssa*e**saaa*

a Global Variables a

int node-status[MAXCUBESIZE+1], /* Status flag for each node */
q-front, /* Front of the queue pointer .1
q-length, /* Queue Length
q.status, /* Queue Status
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q.count, /* OPEN list insertion counter */
freeptr; /* Free List pointer *

PATH q[QSIZE+1), /* Queue of search space nodes */
best, /* Best route found
E-node; /* Next node to expand

* Function/Subroutine Prototype Definitions *

int get-free.nodeO;
PATH copy-nodeO;
void q.init();
PATH delete.qO;
void insert -priorityO;
int same-stateO;
void beam.search.reduction(0;
void prune-q);

* Main Program *

main 0
{
int x, y, z, /* Iteration Counter

ignore, /* Dummy parameter
num-nodes, /* lumber of processors used */
scale-factor, /* Elevation data scale factor */
num_x, /* Number of x coordinates */
num-y, /* Number of y coordinates */
elevation, /* Terrain elevation
next-node, /* Node that needs work
request, /* Work Request Msg Var
work-assigned, /* Number of processors working*/
num-expanded; /* Number of nodes expanded ./

US basex, /* X coordinate for base
base.y, /* Y coordinate for base
base_z, /* Z coordinate for base
base-altitude, /* Actual altitude of base */
targetsx, /* I coordinate for target */
target.y, /* Y coordinate for target */
targetsz, /* Z coordinate for target e/

target.altitude, /* Actual altitude of target *
start-x, /* I coord for starting location*/
start.y, /* Y coord for starting location*/
start_z, /* Z coord for starting location*/
goalsx, /* I coord for ending location */
goal-y, /* Y coord for ending location */
goalsz; /* Z coord for ending location */

long from-node, /* Node number of csend processor*/
start-time, /* Start time
run-time, /* Total execution from start */
init-time, /* Initialization Time 5/

init.path.time, /* Time to find initial route */
search-time, /* Time performing expansions */
totalwork_time, /* Time doing work on OPEN list */
start-.york-time, /* Beginning of a work cycle */
end-work-time; /* Ending of a work cycle */

float efficiency; /* Efficiency of the controller */
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char terrain~file[20J, /* File containing terrain data */
radarf ii.[20) * /* File with radar detection data*/
ATOf ii.[20], /* File with Air Tasking order *
mission(10J; /* Mission designator

FILE *fterrain, *fradar, *fATO, *fopenO);

* BEGIN PROCESSING

start-time = mclockO;

/* Receive the file name of the terrain data from the host c

crecv(TERkAIN..FILE, terrainfile, sizeof(terrainfile));

/* Read in terrain data

fterrain = fopen (terrainfile, "r");
fscsnf (fterrain, "Ud", knum-x);
fscauf (fterrain, 'Id", Anum-Y);
fscanf (fterrain, "U", &scale-.factor);
fclose (fterrain);

/* Receive the file name of the radar detection data from the host *

crecv(UADAR-FILE, radarfile, sizeof(radarfile));

/* Receive the file name of the Air Tasking Order data from the host c

crecv(ATO.FILE, ATOfile, sizeof(ATOfile));

/c Read in Air Tasking Order (ATO) information c

fATO = fopen (ATOfile, "r");
fscanf (fATO, "%s", mission);
fscanf (fATO, 'ihu", &base-x);
fscanf (fATO, "Xlii", &base..y);
fscsnf (fATO, "Xlii", &base..altitude);
fscanf (fATO, "Xlii", ftarget..x);
fscanf (fATO, "Xlii", &target-y);
fscanf (fATO, "Din", &target-altitude);
fclose (fATO);

base..z = base..altitude/scale..factor;
target..z =target-.altitude/scale-.factor;

start-x = base..z;
start-y - base..y;
start-.z =base-.z;

goal-x - target.1;
goal..y - target-y;
goal-z - target..z;

1* printf("\n Data Loaded by Controller (0) \n");
total..vork~time = 0;
num-.nodes - nnmnodesO;
work-.assigned = num..nodes - 1;
nua. expanded . 0;
q..inito;

/* Place initial node (base node) into the OPEN list queue c
E-node.number - 1;
E-node.x[1) - start-x;
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E_node.y[1] - start.y;
E-node.z[t] = start.z;
E-node.vector.x - 0;
E-node.vector-y - 0;
E-node.vector-z = 0;
E.node.distance = 0.0;
E-node.radar = 0.0;
E-node.g = 0.0;
E-node.cost = 0.0;
insert.priority(E.node);

init-time = mclock() - start-time;

/* Get initial best to use as a bound though best may not be a valid route */

csend(EXPAND_|ODE, kE-node, sizeof(E-node), ALL-BODES, NODEPID);
crecv(BESTTYPE, Abest, sizeof(best));

printf("\n Received Initial Path with a computed cost of %f \n\n", best.g);

init.path.time = mclock() - start-time - init-time;

/* Main Loop: while still nodes to expand or work assigned: */
1) Collect Work Requests from the Worker Nodes */

/* 2) Recieve new nodes from Workers and queue up
3) Hand out nodes to expand

/* 4) Maintain the Global Best Answer

while ((q.status != EMPTY) II (work.assigned) II (iprobe(MEW_|ODE))
{

/* Collect any new nodes to add to active queue */
while ((iprobe (NEW-NODE) ) I& (q.status != FULL))

{
start.work-time = mclockC);
crecv(IEW-NODE, &E.node, sizeof(E-node));
from-node - infonode(;
/* printf("NE1_|ODE from %d, cost = %f \n", from-node, E-node.cost); s/

/* insert into OPEN list if cost is less than cost of best route */
if (E.node.cost < best.cost)

{

insert.priority(E-node);

/* See if E.node is a solution e/
if ( (E-node.x[E-node.number] == goal-x) At

(E-node.y[E-node.number] == goal-y) at
(E-node.z[EEnode.number] = goal-z) )

{
printf("\n A Solution Path Has Been Found \n\n");

best = copy.node(E.node, best);
prune-qO;

} /* end if E.node is a goal C/
} /* endif E.node.cost < best.cost */

end-work.time - mclockO;
total-work.time total.work-time + (end.worktime - start work-time);

} /* end while loop C/

/* Collect work requests and set the status to AVAILable */

while (iprobe (WORKREQUEST))
{
start-work-time - mclockO;
crecv(WORKREQUEST, frequest, sizeof(request));
from-node - infonode();

/* printf(" Received work request from node Wd\n", from-node); s/

node-status[from-node] - AVAIL;
work-assigned--;
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end.work-time = mclocko;
total-work-time = total-work-time + (end.work-time - start work-time);

} /* end while loop */
/* If there are problems in the queue and if a worker available, */
/* mark the worker as BUSY, get an E-node from the active queue and */
/1 send it to the Worker. *1

while ((q-status != EMPTY) kk (q[q.front].cost < best.cost) kk

((next-node = get-free-node (num-nodes)) != BUSY))
{
start-work-time = mclockO;
nodestatus[nextnode] = BUSY;
E-node = delete-q(;
work.assigned++;

/* printf ("sending EXPAiD_|ODE to node %d \n", next-node); */

csend(EXPAID.NODE, &E.node, sizeof(E-node), next-node, IODEPID);
num.expanded++;
end.work-time = mclockO;
total.work-time = total.eork.time + (end.work-time - start.work.time);

} /* end while loop e/

I /* end while loop e/

/* Once the best path has been found, terminate the search by sending *1
/* a DONE message to all worker nodes and sending the best route along */
/s with timing information to the host program. */

search.time = mclock() - start-time - init-time - init-path-time;
run-time = mclock() - start-time;
efficiency = (float) total.work-time / (float) search-time;

/* printf("Sending info to the host program \n"); */

csend (BEST-TYPE, &best, sizeof(best), myhostO, HostPID);
csend (TIME-TYPE, ,init-time, sizeof(init.time), myhostO), HostPID);
csend (TIME-TYPE, &init.path.time, sizeof(init.path.time), myhosto, BostPID);
csend (TIME-TYPE, &search-time, sizeof(search.time), myhostO, HostPID);
csend (TIME-TYPE, &run-time, sizeof(run.time), myhosto, HostPID);
csend (TIME-TYPE, &efficiency, sizeof (efficiency), myhosto, HostPID);
csend (NUXLTYPE, knum.expanded, sizeof(num-expanded), myhosto, HostPID);
csend (DONE-TYPE, &ignore, sizeof(ignore), ALL-NODES, NODEPID);

}

-- Subroutine GET FREE PROCESSOR --

-- Passed: n - number of nodes --
-- Returns: BUSY - no worker available OR --

-- i - number of first available worker --

-- Called By: main
-- Calls: none
-- Function: If a worker is available, return its node --

-- number, otherwise return BUSY. --

int get.free.node (n)
int n;
{

int i; /* Loop counter 4/

for (i = 1; i <- n; i++)

if (node-status[i] -- AVAIL) return (i);

return (BUSY);
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-- Subroutine COPY NODE

-- Passed: n1 - source node
-- n2 - destination node
-- Returns: n2 - modified destination node --

-- Called By: main, delete.q, insert-priority
-- Calls: none
-- Function: Copy node n1 into node n2 and return n2
*e**e**e**************eeeeeee******eseee*eeeeeeeeeeeeeeeeeee*****e/

PATH copy-node (ni, n2)
PATH nl,n2;
{

int i; /* Loop counter */

for (i = 0; i <= RAlPATHLENGTH; i++)
{
n2.x[i] = nl.x[i];
n2.y[i] = nl.y[i];
n2.z[i] = nl.z[i];
I

n2.number = nl.number;
n2.vector-x = nl.vector-x;
n2.vector.y = nl.vector.y;
n2.vector-z = nl.vector-z;
n2.distance = nl.distance;
n2.radar = nl.radar;

n2.g = nl.g;
n2.cost = nl.cost;

return(n2);
}

-- Subroutine Q IIT
-- Passed: none
-- Returns: none
-- Called By: main
-- Calls: none
-- Function: Initialize array of free nodes by linking them --

-- together and setting their costs to INFINITY. --

-- Set q-status to EMPTY --

void q.init 0)
{

int i; /* Loop counter 4/

for (i = 0; i <- QSIZE; i++)
q[iJ.link= i + 1;

q[QSIZE].link = EOQ;
freeptr = 0;

q.status = EMPTY;
q-length = 0;
q-count = 0;

q-front = 0;

-- Subroutine DELETE Q
-- Passed: none
-- Returns: TEMP - lowest cost node on queue --
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-- Called By: main
-- Calls: copy-node
-- Function: Remove first element off queue and modify queue --

-- pointers and flags as needed

PATH dclete-q 0)
{

PATH temp; /* Route removed from OPEN list */
int n; /* Points to new front of list e/

if (q.status == EMPTY)
{

printf("****** WARNING -- THE OPEN LIST QUEUE IS EMPTY ******\n);

fflush(stdout);
fflush(stderr);

I

else
{

/* get front node from active queue */

n = q-front;
temp = copy-node (q[q-front], temp);
q-front = q[q-front].link;
temp.link = EOQ;
q-length -= 1;

/* put old node back on free list

q[n).link = freeptr;
freeptr = a;

/* modify q status as appropriate */

if (q.status == FULL)
q-status = QBUSY;

else
if (qsfront == EOQ)

q.status = EMPTY;

return (temp);
} /* endif */

} /* end delete q e/

-- Subroutine INSERT PRIORITY
-- Passed: n - node to insert --
-- Returns: none
-- Called By: main

-- Calls: copy-node
-- Function: Insert node n into queue based on its cost --

void insert-priority (n)
PATH n;
{

int i, j, /* Used to set links correctly */
num, /* Index where inserting route e/
already; /* State already in OPEN list */

if (q-status == FULL)
{

printf("****** WARNING -- THE OPEl LIST QUEUE IS FULL ****** \n");
fflush(stdout);
fflush(stderr);
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alse
{

/* get free node from free list to put new node into e/

num = freeptr;

freeptr = q[freeptrj.link;
q'nrum] = copynode(r, ruml);

/* add new node to empty queue

if (q.status == EMPTY)
{
q[num) .link = EOQ;
q-front = num;

q-status = Q_BUSY;
}

/* otherwise insert in cost order, with smallest costs in front e/

else
if (q[numl.cost < q[q.frontt.cost)

{
qtnum] link s q.front;

q-front = num;
}

else
{

i = q[qdfront] .link;

j = q-front;
while (Mi != EOQ) kA (q[num .cost >= q[i].cost))

{
/* Checking to see if the state which is being inserted e/
/* into the OPEN list already exists in the OPEN list e/
/* with a cost less than the one trying to be inserted. e/

already = same.state(q[numl, q[iJ);
if (already - TRUE)

i = EOQ;
}

else
{

j =i;
i = q[i].link;

} /* endif already */
} /* endwhile */

if (already == FALSE)
{
q[jJ.link = nun;
q[numn.link = i;

}
else

{
q[numn .link a freeptr;
freeptr = num;

} /* endif already 'I
} /e endif q[num] .cost < qtq.front] cost e/

if (already -s FALSE)

q-length += 1;
q-count ++;

if ((q-count % 600) -- 0)

printf(" ** Queue length = %d with q[q.front] .cost - If Wn,
qdlength, q[q-frontJ .cost);
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if (freeptr == EOQ)
beamn.search.reduct ion(;

} /* endif */
I /* end insert-priority */

-- Subroutine same-state
-- Passed: ni - route being inserted --

-- n2 - route in the OPEN list queue --

-- Returns: TRUE or FALSE

-- Called By: insert-priority --

-- Calls: none
-- Function: Determines if the end location of a route being --

-- inserted into OPEN list queue was reached from --

-- the same previous location as a route which is --

-- already in the OPEN list queue. --

int same-state(nl, n2)
PATH n1, n2;
{

int index-nl, /* Parent location in route array nl*/
index-n2; /* Parent location in route array n2*/

index-n1 = nl.number;
index-n2 = n2.number;

/* Determination is based on being at the same location */

/* and having arrived at that location along the same
/* direction vector.

if ( (nl.x[indexnl]= n2.x[index-n2]) kk
(nl.y[index-nl] == n2.y[index-n2]) kk

(nl.z[index-n1] == n2.z[index-n2]) k
(nl.vector-x == n2.vector-x) &&
(nl.vector-y == n2.vector-y) k&

(nl.vector-z n2.vector-z) )
return(TRUE);

return(FALSE);
} /e end samestate */

-- Subroutine beamsearchreduction --

-- Passed: none
-- Returns: none
-- Called By: insert-priority --

-- Calls: none
-- Function: Performs a beam search type reduction on the --

-- OPEN list.

void beam-search-reduction()
{
int pointer, /* Location in OPEN list */

counter, /* Size of the OPEN list */
reduction; /* Point to begin deleting */

printf(" <<<< Performing Beam Search Reduction >>>> \n");
pointer = q-front;
counter = 1;
reduction - REDUCE-FACTOR * QSIZE;
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while (counter < reduction)
{
counter = counter + 1;
pointer = q~pointer].link;

I
freeptr = q[pointer].link;
q[pointer].link - EOQ;
qjlength = counter;

}

/*eee***e*e*eeeeee*e**eeeee**ae***e*ee**************e****eee******

-- Subroutine prune-q
-- Passed: none
-- Returns: none

-- Called By: main

-- Calls: none
-- Function: Prunes the OPEN list priority queue. This --

-- will prune all routes whose cost is equal to or --

-- greater than the cost of the best route. The --

-- assumption made is that the best route is stored--
-- in a separate location. The call to tins
-- routine must follow the call to insert the a
-- route into the queue, thus when the OPEN list --

-- is empty the program will terminate and the best--
-- which was stored in another location will be
-- displayed.

void prune.q()

int lead,
trail,
n;

if(q-status != EMPTY)

q-count = 0;
lead = q-front;
trail = lead;
n = freeptr;

if (q[q.front].cost >- best.cost)

while (lead !s EOQ)
{

trail = lead;
lead = q[leadt.link;

} /* end while */

q[trailJ.link - freeptr;
freeptr = q-front;

q-status = EMPTY;
qjlength = 0;

} /* end if e/

else
{
while ((q[leadJ.cost < best.cost) lb (q[lead].link ! EOQ))

{
q.count ++;

trail a lead;
lead a q[leadJ.link;
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} /* end while */

q-length = q-count;

if (qllead) .link != EOQ)
{
q[trail] .link = EOQ;
freeptr lead;

while (lead != EOQ){
trail = lead;

lead = q[lead].link;
} /* end while */

q[trail].link = n;
q.status = QBUSY;

} /* end if */
I /* end else */

} /* end if */

/* end prune.q() */

A.1.3 Worker Program.

-- DATE: 23 Oct 92
-- VERSION: 3.0

-- TITLE: Parallel Mission Routing Worker Process --

-- FILENAME: WORKER.C
-- AUTHOR: Capt James J. Grimm II

-- COORDINATOR: R. Norris
-- PROJECT: Thesis Research Project --

-- OPERATING SYSTEM: System V
-- LANGUAGE: C

-- FILE PROCESSING: Compile k link with stdio.h, path.h, and math.h --

-- Ensure the program is linked with the math --

-- library using the -lm switch. --

-- FUNCTION: This is the worker program of the parallel mission --

-- routing software. A controller node manages the --

-- centralized open list of the A* search algorithm. The --

-- program loads in all the necessary data (terrain, --

-- radar, and ATO). An initial route is found which is --

-- used by the controller to bound the search. Once done --

-- the worker request a work from the controller. Then a --

-- loop is performed until the worker gets a done message --

-- from the controller. The worker first checks for a --

-- route to be expanded (sent from the controller). After--

-- the route is expanded a reqest for work is sent to the --

-- controller. This process is repeated until the control--
-- node terminates the search. --

-- HISTORY: 3.0 Modified by Capt Grimm for the Mission Routing --

-- Problem
-- 2.0 Modified by 1Lt Rottman for Travelling Salesman --

-- Problem

-- 1.0 Written by Capt Mraz for Deadline Job Scheduling --

* Header Files *

******eee*********************e******e*********e**c**/*A*
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*include <stdio.h> /* Standard I0
*include <math.h> /* Standard math library */
#include "path.h" /* Data structures file

***C*********e***e*******eeeeel*e *e******e*ee**e**e****eeee

* Global Variables *

static int terrain-matrix[MAZJUTRIXSIZE+I][MI _MATRIXSIZE+i];

static float
radar-matrix [MAXMATRILSIZE+l] [MAXMATRIX_SIZE+I] [MALALTSIZE+i];

int scalefactor, /* Elevation data scale factor */
altitude-factor, /* Altitude data scale factor e/
delta[8] [2], /* Matrix for finding children e/
numDx. /* lumber of x coordinates e/
hum_y, /* lumber of y coordinates 5/

num-z, /* Number of z coordinates */
elevation, /* Terrain elevation
min-above-ground, /* Kin altitude above ground e/
lower-alt-block, /* Lowest flight altitude e/
upper_altblock, /* Highest flight altitude */
ceiling, /* Aircraft's flight ceiling e/
combatradius; /* Combat radius in miles */

US goalsx, /* X coord for ending location */
goal.y, /* Y coord for ending location */
goalsz; /* Z coord for ending location */

long my-node; /* My node number

float detection, /* Radar detection value

fieldofsview; /* Max angle change for turns */

char altitude-type[4], /* Altitude reference (AGL/MSL)*/
mission~lO]; /* Mission designator

PATE Etnode; /* lode received for expansion */

/ssaeeessssseeeeaaseaaeseasese*ssaaaeeeaaaaeaaaseesaeeese

* Function/Subroutine Prototype Definitions 5

PATH copy-nodeO;
float difference( ;
double magnitude() ;
void Find.initial-patho;
float Find-h-primeO;
int valid-childC0);
float recursion.search( );
PATH Calculate-costs ;
void Find-childrenO;

I**555**55***************ee*e**********s*e***s******se*es*

* Main Program *
55*5*****e**5******e**e********s***e*****eases************ea**

main 0)
{

int x, y, z, /* Iteration counters
nustexpanded, /* Number of states expanded
ignore; /* Dummy used by WORK REQUEST mag */
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US base.x, /* I coordinate for base location e/

base-y, /* Y coordinate for base location */
basealtitude, /* Actual altitude of base 5/

target-x, /* I coordinate for target location */
target.y, /* Y coordinate for target location e/

target.z, /* Z coordinate for target location 5/

target-altitude; /* Actual altitude of target 5/

long end-time, /* Time end expanding a search node */

temp.time, /* Beginning time of search process */

start-time, /* Start time of node expansion */

total.time, /* Total time doing search process */

work-time, /* Actual time spent expanding nodes*/

num.nodes; /* lumber of processors being used */

float amt-work;

char buf [80);

char terrainfile[20], /* File containing terrain data 5/

radarfile[20], /* File with radar detection data */
ATOfile[20], /* File with Air Tasking Order */
aircraft-type[1O]; /* Type of aircraft */

FILE *fterrain, *fradar, *fATO, *fopenO;

/e***s********************s*55*****

* BEGIN Processing *

/* Ensure this is a valid node for the worker program */

my.node = mynodeO;
num.nodes = numnodesO;

if (my-node == 0)
exit (1);

if (my-node >= num-nodes)
exit(0);

/* Initialize the delta matrix */

delta[0] [0] = 0 ; delta[0J [1] = 1;
delta[l][0] = I ; delta(l][1] = 1;

delta[2][0] [ 1 ; delta[2][1] = 0;
delta[3][0] = I ; delta[3][1] = -1;
delta[4] [0] = 0 ; delta[4) [1] = -1;

delta[(S [0) = -1 delta[5] [1I = -1;

delta[6] [0) = -1 ; delta[6] [1] = 0;
delta[7][0] = -1 ; delta[7][1I = 1;

nun-expanded = 0;
fieldLof-view - 60.0;
ceiling = 40000;
combat-radius a 575;

/* Receive the file name of the terrain data from the host s/

crecv(TERRAIIF-FILE, terrainfile, sizeof(terrainfile));

/* Read in terrain data */

fterrain - fopen (terrainfile, "r");
fscanf (fterrain, "%d", &num-x);

fscanf (fterrain, "%d", &numny);

fucanf (fterrain, "U4", &scale.factor);
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for (y - 1; y <= nuin.y; y+'+)

for (x M1; x <= num-x; X++)

fscanf (fterrain, "%d", &elevation);
terrain-.matrix Ex] Ey) = elevation;
} * end for y e

} * end for x */
fclose (fterrain);

/* Receive the file name of the radar detection data from the host *
crecv(RADAR-FILE, radarfile, sizeof(radarfile));

/* Read in radar detection data

fradar = fopen (radarfile, "r");
fscanf (fradar, %d", knum~x);
fscanf (fradar, "%d", knum-y);
fscanf (fredar, %d", knum~z);
fscanf (fradar, "%d", &altitude-factor);

for (z = 0; z < num-z; z++)

for (y =1; y <- num..j; y++)

for (x = 1; x <= num-x; x++)

fscanf (fterrain, "%f', &detection);
radar-.matrix [x] [y][zJ = detection;
}/* end for y *

I/* end for x
}/* end for z *

fclose (fradar);

/* Receive the file name of the Air Tasking Order data from the host *
crecv(ATO..YILE, ATOfile, sizeof(ATOfile));

/0 Read in Air Tasking Order CATD) information
fATO - f open (ATOfile, "r");
fscanf (fATO, '*%s", mission);
fscanf (fATO, 'Zhu", &base-.x);
fscanf (fATO, 'Zhu", &base-y);
fscanf (fATO, "Thu", &base-altitude);
fscanf (fATO, "Thu". ktarget~x);
fscanf (fATO, "Thu", &target..y);
fscauf (fATO, 'Thu', kta~rget -altitude);
fscanf (fATO, "%d", &min-above-ground);
fscanf (fATO, "%d", &lower..alt-block);
fscanf (fATO, "%d", &upper-alt..block);
fscanf (fATO, "W'", altitude-.type);
fcloae (fA'ro);

target..z target-.altitude / altitude-factor;

goali = target-x;
goal-y target.4;
goal-z =target-z;

temp-time =mclockO;
work-.time -0;

/0 Find initial path so as to create a bound on the search. e
I' This path is not guarenteed to be a valid path. *
crocv(EXPANO lODE, AE..node, sizeof(E-node));

A- 17



Find.initial.path(E.node);

csend (WORK-REQUEST, kignore, sizeof(ignore), CONTROLLER, NODEPID);

/* printf(" Node %d sent work request to controller \n", my-node); */

/s Control Loop: 4/

1) If an ELnode has arrived, expand it and send any viable e/
children back to controller. Request more work. */

2) If a DONE message arrives, terminate.

for (;;)
{

/* 1) check for work: a node to expand.

if (iprobe(EXPAUDNODE))
{
start-time = mclocko);
crecv (EXPAND-NODE, &E-node, sizeof(Enode));

num-expanded ++;

/* printf ("Node %d received EXPAND-NODE \n",my-node); *I

Findtchildren(E-node);

end-time = mclock() - start-time;
work-time += end-time;

/* Send a request for more work */
csend (WORKIREQUEST, &ignore, sizeof(ignore), CONTROLLER, NODEPID);

/$ printf("Node %d sent work request to controller \n",my.node); */
} /* end if */

/* 2) check to see if done. */

if (iprobe (DONE-TYPE))
{

csend(EXPANDED, knum-expanded, sizeof(numtexpanded), myhosto, HostPID);
printf(" Node %d expanded %d states\n", my-node, numwexpanded);
break;

}

) /* end for ;;

total-time = mclock() - temp-time;
sprintf (buf,"total Ild, work %ld", total-time, work.time);

/e syslog (NODEPID, buf);*/
amt-work = (float) work-time/ (float) total-time;
csend (WORK-TYPE, kamt_,ork, sizeof(amt.work), myhostO, HostPID);

} /* end main e/

-- Subroutine COPY NODE
-- Passed: n1 - source node --

-- n2 - destination node --

-- Returns: n2 - modified destination node --

-- Called By: Calculate-costs --

-- Calls: none
-- Function: Copy node n1 into node n2 and return n2 --
***see$$$$$$e$$$$$$$$$$$$$$$ee$$$$$$$$$$$$$$$$e$$$$e$$$$$$$$$$$$$/

PATH copy-node (ni, n2)
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PATH nl,n2;
{

int i; /* Loop counter

for(i = 0; i <= MAXPATHLEIGTH; i++)
{

n2.x[i] = nl.x[i];
n2.y[i] = ni.y[i];
n2.z[i] = nl.z[i];

I

n2.number = nl.number;
n2.vector-x = nl.vector•x;
n2.vector-y = nl.vector-y;
n2.vectorz = nl.vector~z;
n2.distance = nl.distance;
n2.radar = nl.radar;
n2.g = nl.g;
n2.cost = nl.cost;
return(n2);

I

-- Subroutine difference
-- Passed: xl - x coordinate of first location --

-- yl - y coordinate of first location --
-- zl - z coordinate of first location --

-- x2 - x coordinate of second location --

-- yl - y coordinate of second location --

-- z2 - z coordinate of second location --

-- Returns: distance
-- Called By: h-prime, Calculate-costs --

-- Calls: none
-- Function: Calculates an h' as the A* heuristic. --

float difference(xl, yi, •l, x2, y2, z2)
US xl, yl, zl, x2, y2, z2;
{
nt xysquare, /* Square of delta x's

yzsquare, /* Square of delta y's */
z...square; /* Square of delta z's */

float distance; /* Distance between locations */

x•square = (xl - x2) * (xW - x2);
y.square = (yl - y2) * (yl - y2);
zxsquare = Wzl - z2) * (zl - z2);
distance = (float) sqrt ((double)(x square + y.square + z.square));
return(distance);

I

/*******$**********e******e*************s**************************

-- Subroutine magnitude
-- Passed: x - length of vector in x direction --

-- y - length of vector in y direction --

-- z - length of vector in x direction --

-- Returns: mag
-- Called By: valid-child
-- Calls: none
-- Function: Calculates the magnitude of a vector. --

double magnitude(x, y, z)
int x, y, z;
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{
double mag; /* Vectors' magnitude

sag = sqrt ((double)(x * x + y * y + z * z));
return(mag);

I

-- Subroutine Find-initial-path --

-- Passed: E-node : path being explored --

-- Returns: none
-- Called By: main
-- Calls: Calculate-costs, Find-initial-path --

-- Function: Find an initial route to be used as the initial--
-- bound on the A* search. The resultant route is --

-- not guarenteed to be a valid route. --

void Find-.initial-path (E-node)
PATH E.node;
{
int index, /* Parent location in route array */

found, /* Flag if a child was found */
delta-x, /* Difference from parent and goal*/
delta-y, /* Difference from parent and goal*/
delta-z, /* Difference from parent and goal*/
min-altitude, /* Minimum flight altitude
actual-altitude, /* Actual flight altitude */
terrain-elevation; /* Elevation of the terrain

US parentx, /* I coordinate of parent location*/
parent-y, /* Y coordinate of parent location*/
parent-z, /* Z coordinate of parent location*/
child-x, /* X coordinate of child location */
child-y, /* Y coordinate of child location */
child.z; /* Z coordinate of child location 5/

float radar-cost, /* Radar cost from parent to child*/
cost; /* Total cost from parent to child*/

PATH temp; /* Partial route for recursion */

* BEGIN Processing *

index = E-node.number;
parent-x = E-node.x[index];
parent-y - E-node.y[index];
parent-z = E-node.z[index];

if ((parent-x == goalx) A& (parent-y == goal-y) Ub (parent-z == goal-z))
{

if (my-node == 1)
csend(BESTTYPE, *E-node, sizeof(E-node), CONTROLLER, IODE-PID);

I
else

{
delta-x = goal-x - parentzx;
if ( abs(delta-x) > 0)

deltax a deltax / abs(delta-x);

delta.y = goal-y - parent-y;
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if ( abs(delta-y) > 0)
deltaty - delta.y / abs(delta.y);

deltasz = goalsz - parentsz;
if ( abs(delta-z) > 0)

deltasz = deltasz / abs(delta-z);

child-x = parentsx + deltasx;
child-y = parent-y + delta.y;
childsz = parentsz + deltasz;

terrain-elevation = terrain-matrix[child-x) [child-y];
min-altitude = terrain-elevation + min-aboveground;
actual-altitude = child-z * altitude-factor;

if (actual-altitude > min-altitude)
{
temp = copy-node(E-node, tomp);
temp = Calculate.costs(temp, child-x, child-y, child.z);

Finddinitial-path(temp);
}

else
{
found = FALSE;

while (deltasz < 1)
{
delta-z = deltasz + 1;

child-z - child-z + deltasz;

actual-altitude = child-z * altitude-factor;
if (actual-altitude > fin-altitude)

{

temp = copy-node(E-node, temp);
temp = Calculate.costs(temp, child-x, child.y, childsz);

Findjinitial-path(temp);
delta-z = 2;

found = TRUE;

} /* end while */
if (found == FALSE)

{
/* The only direction left is straight up (vertical climb) which */
/* is not a valid direction. This is one reason why the route e/
/* found by this routine is not guarenteed to be a valid route. e/

child-x = parentsx;
child-y = parent-y;
child-z = parentsz + 1;
temp = copy-node(E-node, temp);

temp = Calculate.costs(temp, child-x, child-y, child-z);

/* As a compensation of not being a valid direction the cost of */
/* going from the parent to the child location is doubled by */
/e recalculating and adding to the total cost the radar detection */
/* cost while the distance between locations is known to be 1.

radar_cost = radar.aatrix[child_x](child-y)[childszj

* (float) scale-factor;
temp.radar = temp.radar + radar-cost;

cost - (U - VEIGHTjADAR) + (WEIGHT-AADAR * radar-cost);
temp.g = temp.g + cost;
temp.cost - temp.cost + cost;

Find.initial-path(temp);
}

} /* endif first child above ground */
I /e endif at target */
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} /* end Find.initial-path e/

-- Subroutine Find-h.prime
-- Passed: x - x coordinate of child node --

-- y - y coordinate of child node --
-- z - z coordinate of child node --

-- Returns: h.prime
-- Called By: Calculate-costs --

-- Calls: difference
-- Function: Calculates h' for the A* search algorithm. --

float Find-h.priie (E-node)
PATE E.node;
{
float h.prime; /* Calculated A* heuristic */

h-prime = recursion.search(Esnode, 0);
return(h&prime);
I

-- Subroutine valid-child
-- Passed: E&node : path with parent --

-- childx : x coordinate of child node --

-- childy : y coordinate of child node --

-- child-z : z coordinate of child node --

-- Returns: TRUE or FALSE
-- Called By: Find-children

-- Calls: magnitude
-- Function: Determines if a child can be reached from the --

-- the parent node. A number of rules are applied --

-- to make this determination. --

-- NOTE: The rules are "fired" in sequential --
-- sequential order. If a false condition --

-- occurs then firing ceases and a FALSE is --

-- returned to the calling routine. --

-- RULE 1:
-- The aircraft is at least some minimum --

-- height above the ground and below its --

-- ceiling.
-- RULE 2:
-- The aircraft is within the block of --

-- altitude specified in the ATO file. --

-- RULE 3:
-- Ensure the aircraft flight distance is not --
-- greater than its combat radius, This --

-- ensures the aircraft will be able to --
-- return to its beginning location (.i.e. --

-- no in-flight refueling starting at base --

-- location will be assumed). --

-- RULE 4:
-- The aircraft can rearch the child's --

-- location from it's present location and --

-- heading. If the magnitude of the old --

-- direction vector is zero then an assumption--

A-22



-- is made that the parent is the starting --

-- location and that any child node being --

-- tested can be reached. --

int valid-child (E-node, child-x, child-y, child-z)
PATH E-node;
US child-x, child-y, child-z;

{
US parent-x, /* Y coordinate for parent node */

parent-y, /* Z coordinate for parent node */
parent..z; /s Z coordinate for parent node e/

int index, /* Array index of parent node
min-altitude, /* Minumum altitude at child location e/
actual-altitude, /* Actual altitude at child location e/

terrain-elevation, /* Elevation at child-x, child-y location e/
dir-x, /* Direction vector (x) to get to parent */

dir.y, /* Direction vector (y) to get to parent s/
dir-z, /* Direction vector (z) to get to parent e/
delta-x, /* Direction vector (x) to get to child 5/

delta.y, /e Direction vector (y) to get to child e/

deltasz; /1 Direction vector (z) to get to child */

float distance, /* Distance (feet) flown by the aircraft */
miles-flown; /* Distance (miles) flown by the aircraft e/

double numerator, /* Used in angle calculation (acos value) */
denominator, /* Used in angle calculation (acos value) s/
fraction, /* Numerator divided by denominator
angle, /* Angle between direction vectors (deg) */
mag.old.dir, /* Magnitude of direction vector to parent */

mag.new-dir; /* Magnitude of direction vector to child */

/essssssesssssssessssssssesseesesssssseesssss

** RULE I *

terrain-elevation = terrain-matrix[childtx] [child.y];
min-altitude = terrain-elevation + min-aboveground;
actual-altitude = childz * altitude-factor;

if (min-altitude > actual.altitude)
return(FALSE);

if (ceiling < actual.altitude)
return(FALSE);

Cs RULE 2 **

if (altitude.type[O] == 'N')
{

if (actual-altitude < lower-alt-block)
return(FALSE);

if (actual-altitude > upper-alk-block)
return(FALSE);

}

else
{

if (actual.altitude < (terrain-elevation + lower-alt-block))
return(FALSE);

if (actual-altitude > (terrain-elevation + upper.-alt-block))
return(FALSE);
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cc RULE 3 **
cccccc*ccc*ccccccccccccccccccccc*ccccc*e*ccc/

/* use conversion factor 1 mile = 5280 feet c/

/c This will estimate the minimum miles flown by adding to the ./
/* distance already flown the straight line distance between the c/

/* location and the target location. This is a good approximation C/
/* with minimal calculation time needed.

index = E.node.number;
parentx = Enode.x[index];

parent-y = E-node.y[index];

parent-z = E.node.z[index];

distance = difference(parent._x, parent-y, parent-z, goal-x, goal-y, goal-z)
* (float) scale-factor;

miles-flown = (E-node.distance + distance) / 5280.0;

if (miles-flown > (float) combat-radius)
return (FALSE);

*************ccccccccc**********************c*

** RULE 4 c*

dir-x = E-node.vector.x;

dir-y = E.node.vector.y;

dir-z = E.node.vector-z;
delta-x = child-x - parent-x;
delta.y = child-y - parent-y;
delta-z = child-z - parentz;

mag-new-dir = magnitude (deltax, delta-y, delta.z);
mag-old-dir - magnitude (dir-x, dir-y, dir-z);

if (mag-old-dir == 0.0) /c for first time thru */
return (TRUE);

numerator = (double)(dir.x * delta-x + dir-y * delta.y + dir-z e delta-z);
denominator = mag.old-dir * mag.new.dir;

fraction = numerator / denominator;

/* The following tested are performed to protect against round-off */
/* errors. When testing the calculation of the angle between the two */
/* directional vectors invalid resutls were obtained at the end points C/

/* of the acos returned values (i.e when the angle was either 0 or pi */
/* radians.) The acos function requires the input parameter to be of c/
/* the type double, so any floats were changed to double, including C/
/* the value of the magnitude function. This seems to solve some of C/

/* the errors, but not all of them. Sometimes the acos routine */
/* returned a correct answer for 0 and pi radian angles and sometimes c/
/* and error was returned. A careful examination of each of the
/* parameters revealed that when the magnitude of each of the C/
/c directional vectors was sqrt(2) a correct answer for the acos
/* calculation was returned but when the magnitudes were sqrt(3) then */
/c errors were encountered. It was at this point that the calcuations c/
/e for the numerator and denominator (for the acos input parameter) e/
/* were separated and the %18.20f print statement used. It was found c/
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/* that the sqrt function returned a value with a small error. When e/

/* performing sqrt (3) * sqrt (3) the value 3 was not returned but the */
/* value 2.99999 which caused the error to occur in the acos routine. */
/* Since the input parameter to the acos routine is -1 <= x <= 1 a
/* value out of this range indicates an overflov/underflow occurred */
/* during the calculation and the value needs to be set to the correct e/
/* value. Thus ensuring the acos routine is sent a valid value.

if (fraction > 1.0) fraction = 1.0;
if (fraction < -1.0) fraction = -1.0;

angle = acos(fraction);

/* The acos function returns an angle in radians, so the following */
/* calculation converts that angle into degrees.

angle = angle * 180.0 / LPI;

/* See if the angle between the two directional vectors is less than the */
/* turn/climb/dive angle specified for the aircraft (field.oftview).

if (angle <= field-ofsview)

return(TRUE);

return(FALSE);

} /* end valid_child */

/*eeeeeeeeeeeeeee******e*eeeeee*e*ee*eeeeeeee***eeeeee*eeeeee*****

-- Subroutine recursion-search --

-- Passed: E-node : path being explored --

-- depth : depth of search --

-- Returns: cost
-- Called By: Find-h-prime
-- Calls: difference, valid-child --

-- Function:
eeeeeee*eeeeeeseeeeeeee****s*eeeee*e*eeeeeeeeee*ee*eeeee****e***/

float recursion-search (Etnode, depth)
PATH E-node;

int depth;
{
int c, z, /* Loop counters *

index; /* Parent location in route array e/

US parent-x, /e I coordinate of parent location */
parent-y, /* Y coordinate of parent location e/
parent-z, /* Z coordinate of parent location */
child-x, /* I coordinate of child location */
child-y, /* Y coordinate of child location */
child-z; /* Z coordinate of child location */

float best-cost, /* Best overall cost found
cost, /* Total cost from parent to child /
distance, /* Distance from parent to child e/
radar-cost, /* Radar cost from parent to child */
value; /* Determine best cost at parent e/

PATH temp; /* Partial Route sent for recursion*/

/ e***e**@eeeeeQ******ee***eeeeee*•*

S BXEGIS Processing e
•eeeeeee**eeeeeeeee•ee~eee*eeee•A/
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best-cost = (float) (IIFINITY * scale-factor);
index = E-node.number;
parent-x = E-node.x[index];
parent-y = E-node.y[index];
parent-z = E-node.z[index];

if (depth >= NAIXDEPTH)
{

/* The last location in the recursion search has been found thus C/
/e the heuristic to determine the cost between this location and e/
/e the goal location is the straight line distance between the */
/* two locations, assuming node radar detection cost.

distance - difference (parent.-x, parent.y, parent.z, goal-x, goal.y, goal.z)
* (float) scale-factor;

radar-cost = 0.0;
cost = (1.0 - WEIGHT-RADAR) * distance + WEIGHT 1&UAR * radar-cost;
return(cost);
I

if ((parent-x == goal-x) && (parent-y == goal-y) && (pare~Itaz == goal-z))

/* The goal location has been encountered during the recursion */
/* search, thus 0.0 is returned as the heuristic cost of getting */
/e to the goal location and the recursion bottoms out.

cost = 0.0;
return(cost);
I

for (z = -1; z <= 1; z++)
{
child-z = parent-z + z;

/* ensure child is within altitude boundaries */
if ( (child.z >= 0) U (child.z <= num.z) )

{
for (c = 0; c <= 7; c++)

{
child-x = parent-x + delta[c] [0);
child-y = parent.y + delta[c][1J;

/* ensure child is within terrain boundaries */
if ( (childLx > 0) Uk (child-x <= num-x) At

(child-y > 0) Uk (child-y <= numny) )
{

if (valid-child(E-node, child-x, child-y, child.z))
{
temp = copy-node(E-node, temp);
temp.number = index + 1;
temp.x[index +1) = child.x;
temp.y[index +1) = child.y;
temp.z[index +1) = child-z;
temp.vectorx = child-x - parent.x;
temp.vector_y = child-y - parent.y;
temp.vectorz = child-z - parent.z;
value z recursion.search(teup, depth + 1);
distance = difference(parent-x, parent-y, parent.z, child.x,

child-y, child.z) * (float) scale-factor;

radar-cost = radar-matrix[child.x] [child-y) [child-z)
* distance;

cost - (1.0 - IEIGHT.RADAR) * distance
+ WEIGHT_.RADIR C radar-cost;

value = value + cost;
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if (value < best-cost)
best-cost = value;

} /* endif valid-child e/

} /* endif child in terrain boundary */
} /* end for c */

I /* endif z in altitude boundary */
} /* end forz z/

return(bestscost);

1 /* end recursion-search *1

-- Subroutine Calculate-costs --

-- Passed: Etnode path with parent --

-- child-x : x coordinate of child node --

-- child-y : y coordinate of child node --

-- child-z : z coordinate of child node --

-- Returns: temp : new route with calculated costs --

-- Called By: Find-children
-- Calls: copy-node, difference, Find-h.prime --

-- Function: Calculates the costs associated with moving --

-- from the parent node to the child node along --

-- with computing the cumlative values. --

PATH Calculate-costs (Esnode, childx, child-y, childtz)
PATH Etnode;

US child-x, child-y, child-z;
{

int index; /* Parent location in route array e/

US parent.x, /* I coordinate for parent location */
parent4y, /* Y coordinate for parent location /
parent.z; /* Z coordinate for parent location */

float h.prime, /* Projected cost from child to goal */
radar-cost, /* Radar cost from parent to child c/
cost, /* Total cost from parent to child */
distance; /* Distance from parent to child c/

PATH temp; /* Route, with child, being examined c/

* BEGIN PROCESSING *

index = E.node.number;
parentsx = E-node.x[index];
parent-y = E-node.y[index];
parentsz = Esnode.z[index];

temp = copy.node(E.node, temp);
temp.x[index +1] = child-x;

temp.y[index +1] = child-y;
temp.z[index +1) - child-z;
temp.number = index + 1;

distance - difference(parent -x, parent-y, parent-s, child-x, child-y, child.z)
* (float) scale-factor;

temp.distance - temp.distance + distance;

radar-cost - radar.matrix[child.x][child-y][child.zJ * distance;
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temp.radar = temp.radar + radar-cost;

cost = (1.0 - WEIGHTRADAR) * distance + WEIGHTRADAR * radar-cost;

temp.vectorsx = child-x - parent-x;
temp.vector-y = child-y - parent.y;

temp.vector-z = child-z - parent-z;

temp.g = temp.g + cost;
h.prime = Find-h-prime(temp);
temp.cost = temp.g + h-prime;

return(teemp);
} /* end Calculate-costs s/

-- Subroutine Find-children
-- Passed: E.node : path with parent needing expansion. --

-- Returns: none
-- Called By: main
-- Calls: Calculate-costs --

-- Function: Finds all the children of a given parent. Only --

-- paths with valid children are sent back to the --

-- Controller node for inclusion into the OPEN --

-- list queue.

void Find-children (E&node)
PATH E_node;
{
int c, z, /* Loop counters

index; /* Parent location in route array */

US parent.x, /* X coordinate for parent location */
parent.y, /* Y coordinate for parent location */
parent-z, /* Z coordinate for parent location */
child-x, /* I coordinate for child location */

child.y, /* Y coordinate for child location */
child-z; /* Z coordinate for child location c/

PATH temp; /* Route, with child, being examined c/

• BEGIN Processing *
ccccccccccccccccccccccc***ccccc*c/

index - E-node.number;
parent-x = &-node.x[indexJ;
parent.y = E-node.y[index];
parent-z - E-node.z[index];

for (z = -1; z <= 1; z++)
{
child-z = parent-z + z;

/* ensure child is within altitude boundaries */

if C (child-z >- 0) At (child-z <= num.z) )

for (c - 0; c <- 7; c++)
{
child-x - parent.x + delta[c][0);
child-y - parent-y + deltaic][1];
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/* ensure child is within terrain boundaries */
if ( ( (child-z > 0) ,k (child-x <= nu--x) ) &&

( (child-y > 0) &k (child-y <= numny) )
{

if (valid-child(E-node, child.x, child-y, child-z))
{

temp = Calculate-costs(E-node, child-x, child-y, child-z);

/* send route with valid child to the controller*/
csend (NEiNODE, ktemp, sizeof(temp), CONTROLLER, UODEPID);

} /* endif valid-child */
} /* endif child in terrain boundary */

} /* end for c */
} /* endif z in altitude boundary */

} /* end for z */
/* end Find-children e/
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A.2 Sequential Version

Many of the routines used by the sequential version are exactly the same as used for the

parallel version. Instead of providing a listing of the entire source code for the sequential version only

the two routines which were modified (main and find-children) are given. The timing information

collected by the host program for the parallel version is collected by the search program as well as

the display of the solution. A host program was used to interface with the sequential version of the

code running on the parallel computer.

/****************s*****************

* BEGIN Processing (main)*

crecv(TERRAINFILE, terrainfile, sizeof(terrainfile));
crecv(RADARFILE, radarfile, sizeof(radarfile));
crecv(ATOFILE, ATOfile, sizeof(ATOfile));

start-time = mclocko;

/* Initialize the delta matrix s/

delta[O][0] = 0 ; delta[0][1] = 1;
delta[i][0] = 1 ; delta[1][1] = 1;
delta[2][0] = 1 ; delta[2][1] = 0;
delta[3][03 = i ; delta[3][1] = -1;
delta[4][0] = 0 ; delta[4][1] = -1;
delta[5][0] = -1 ; delta[5][1] = -1;
delta[6][0] = -1 ; delta[6] [1] = 0;
delta[7][0] = -1 ; delta[7][1 ) = 1;

q.init C);

found = FALSE;
num.expanded = 0;
field-oftviev = 60.0;
ceiling = 40000;
combat-radius = 575;

/* Read in terrain data
fterrain = fopen (terrainfile, "r");
fscanf (fterrain, ".d", AnuNx);
fscanf (fterrain, "kd", tnum.y);
fscanf (fterrain, "%d", Ascalefactor);

for (y = 1; y <- numay; y++)
{
for (x 1; x <= nua-x; x++)

{
fscanf (fterrain, "%d", &elevation);
terrain m'ttrix [(][y] - elevation;

} /* end for y */
} /* end for x */

fclose (fterrain);

/* Read in radar detection data

fradar - fopen (radarfile, "r");
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fscanf (fradar, 'Id". knum..z);
fscanf (fradar, "%d", knum-y);
facan! (fradar, "'Id", In* -
fscanf (fradar, "%d", &altitude-factor);

for (z = 0; z < num-z; z++)

for Cy =1; y <= num..y; Y++)

for (x = 1; x <= num-z; x++)

facanf (fterrain, 'If", idetection);
radar-na'rix [xI[yllz] = detection;
/ * end for y *

}/* end fox x 5

/ * end for z 5
fclose (fradar);

/* Read in Air Tasking Order (ATO) information
fATO = fopen (ATOfile, "r");
fscanf (fATO, 'Is", mission);
fscanf (fATO, "`Xhu", &base-x);
fscanf (fATO, "Zhu", &base-y);
fscanf (fATO, "Thul', kbase-.altitude);
fscanf (fATO, " Xhu'", ftarget-x);
fscanf (fATO, "thu', &target-y);
fscanf (fATO, "%hull, &target..aJtitude);
fscanf (fATO, 'Id", &min-above-ground);
fscanf (fATO, "%d', klover-alt-block);
fscanf (fATO, 'Id", &upper..alt-block);
fscanf (fATO, 'Is", alt itude-type);
fclose (fATO);

target..z = target-.altitude / altitude..Iactor;
base-.z = base-.altitude / altitude...actor;

goal-.x = target-x;

goal-y = target..y;
goa]...z = target..z;

start-.x = base-x;
start-.y = base-.y;

start-.z = base-z;

/* Place initial node (base node) into the OPEN list queue *
E..node.number = 1;
E-.node.x[1] = start-z;
E..node.y(1J = start..y;
E-.node.z[iJ = start-z;
E..node.vector-.x = 0;
E-.node.vector-y - 0;
E-.node.vector-.z = 0;
E-node.distance - 0.0;
E-.node.radar = 0.0;
E..node.g = 0.0;
E..node.cost = 0.0;
insert-priority(E-node);

init..time = mclock() - start-time;

/* Find initial path so as to create a bound on the dearch. 5

/* This path is not guarenteed to be a valid path. 5

Find-initial..path(E..node);
printf(" Found an initial route with a cost of %f \n", best.cost);

A-31



init.path.time = mclock() - start-time - init-time;

temp-time = mclocko);

ehile(q.status != EMPTY)
{
E-node = delete-q(;
num-expanded ++;
Find.children(ECnode);

} /* endwhile */

search-time = mclock() - temp-time;
run-time = mclock() - start-time;

print.route(best);

printf("\n\t *** Timing Information ***\n\n");
printf("Initialize = %9.3f (sec) \t Find Initial Route = %9.3f (sec) \n",

(float)init-time/1000.0, (float)init-path.time/1000.0);
printf("Searching = %9.3f (sec) \t Total Execution = %9.3f (sec) \n\n",

(float)search.time/l000.0, (float)run-time/1000.0);

printf("** td Nodes Expanded \n\n", num.expanded);

csend (DONE-TYPE, kdummy, sizeof(dummy), myhosto, HostPID);

} /* end main *1

-- Subroutine Find-children
-- Passed: E-node : path with parent needing expansion. --

-- Returns: none
-- Called By: main
-- Calls: Calculate-costs --

-- Function: Finds all the children of a given parent. Only --

-- paths with valid children are sent back to the --

-- Controller node for inclusion into the OPEN --

-- list queue.

void Find-children (E-node)

PATH E-node;
{

int c, z, /* Loop counters *,

index; /* Parent location in route array t/

US parent-x, /* I coordinate for parent location */
parent-y, /* Y coordinate for parent location */
parentsz, /f Z coordinate for parent location */
child-x, /f X coordinate for child location */
child-y, /* Y coordinate for child location t/
child-z; /t Z coordinate for child location C/

PATH temp; /* Route, with child, being examined C/

* BEGIN Processing *

index = E-node.number;
parentsx = E-node.x[index];
parent-y = E.node.y[index];

parentsz = E-node.z[index];
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for (z = -1; z <= 1; z++)

child-z - (US) ((unt) parentsz +z)

/* ensure child is within altitude boundaries *
if C(child-z >= 0) t& (child-z <= nunsz))

for (c = 0; c <= 7; c++)

{hl- u)Mt arn- et~)0)
child-y = (US) ((int) parentsy + delta[cJ [0]);

/*printf ("Looking at child(td %d %d) \n" ,child-x, chil-y, ch ilds);*

/* ensure child is within terrain boundaries *
if C child-x > 0) kk Cchild-x <= nunsx) ) at

C child-j > 0) at (child-y <= nun..y) ) )

if Cvalid-.childCE-node, child-.x, child-y, child-.z))

temp = Calculatescosts(E..node, child-x, child-j, childsz);

if Ctemp.cost < best.cost);

insert..priority~teinp);

if C(temp.x[temp.nuinber] = goalsx) tA
(temp.y[temp.number] = goal-j) A
(temp.z[temp.number] = goalsz)

printfC'\n A Solution Path Has Been Found \n\n');
best = copy-.node(temp, best);

prune-q0;
I/* endif goal reached e

} * endif temp.cost < best.cost "
}/* endif valid-.child e/

I/* endif child in terrain boundary *
}/* end for c*/

I/* endif z in altitude boundary *
I/* end for z *

I/* end Find-children e
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A.3 Support Files

A.3.1 Header File.

/ee*eeeeeeee*n************************eeeeeneeea**e*e********s**

* PATH HEADER FILE *

"* Date: 1 Sept 1992 *

"* Function: The following header file defines the solution *

* vector and the priority queue functions needed *

* by the parallel mission routing system. *

* Define Constants *

*define US unsigned short
*define TRUE 1 /* True is defined as integer 1 /
*define FALSE 0 /* False is defined as integer 0*/
*define MAXPATHLENGTH 150 /* Maximum entries in route s/

*define MAXMATRIXSIZE 100 /* Maximum size of terrain/radar*/
*define MAXALTSIZE 52 /* Maximum altitude entries e/
#define QSIZE 9500 /* Size of the OPEN list queue */

*define INFINITY 9999
*define MAXLCUBESIZE 8 /* Largest cube size possible s/
*define MAX-DEPTH 5 /* Max depth of recursion
*define WEIGHT-RADAR 0.8 /* Weighting of radar detection */
*define REDUCE-FACTOR 0.6 /* Beam search reduction factor */

/*ssse*e*sssss*ss*see*ssssssseese*eeeee*ssee****e

* Define Flags *

*define AVAIL -1 /* Node Available for work */
*define BUSY -2 /* Node is busy

#define EOQ -1 /* End of Linked List Marker s/
*define EMPTY 1 /* Queue Empty flag (status) */
tdefine Q.BUSY 2 /* Queue Busy flag (status) e/
*define FULL 3 /* Queue Full flag (status) e/

* Define PID's and Node Assignments *

*define NODEPID 0 /* Node Process ID */
*define ALL.NODES -1 /* Code to send to all nodes */
#define ALL.PIDS 0 /* All processes */
*define CONTROLLER 0 /* Controller - Node 0
*define HostPID 0 /* Host Process ID

* Define Message Types *

*define BEST-TYPE 30 /* Message containing a solution*/
*define TIME-TYPE 40 /* Timing information message */

*define EXtANDNODE 50 /* A partial route to expand e/
*define DONETYPE 60 /* Done with the problem
*define WORK-REQUEST 80 /* Message requesting work */
#define NEW-NODE 90 /* Expanded route, to controller*/
*define VORKTYPE 110 /* Total work time of worker e/
*define NUITYPE 120 /* Number of locations expanded e/
*define EXPANDED 200 /0 Message identifier
*define TERRAIN-FILE 220 /* Terrain filename message */
$define ATOFILE 230 /* ATO filename message */
*define RADAR-FILE 240 /* Radar filename message */
$define PLANE-FILE 250 /* Plane filename message
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* Path Information Record e

typedef struct {
int number; /* Number of entries in the route */
US x [MAXPATh.LENGTH+1); /* Vector of x locations
US y [NAXPATHLENGTH+1; /* Vector of y locations 4/

US z [MAXPATHLENGTH+1]; /* Vector of z locations
int vector-x; /* Direction vector in x direction */
iut vector-y; /* Direction vector in y direction */
int vector-z; /* Direction vector in z direction e/
float distance; /* Cumlative distance of the route */
float radar; /* Cumlative radar detection cost */

float g; /* Cost of the given route
float cost; /* Calculated cost (f') of route */
int link; /* Forward Links for the OPEN list */

} PATH;

A.3.2 Make File.

* DATE: 23 Oct 92
S VERSION: 1.0
* TITLE: Nakefile for creating and updating the parallelized A* search
• code for execution on the iPSC/2 hypercube.
* FILENAME: Makefile
• COORDINATOR: Capt Joel Garmon
• PROJECT: EENG 656 Parallel Programming
# OPERATING SYSTE1-: XENII
S HISTORY:
S 05/31/91 Capt Joel Garmon
• - Initial version
* 10/23/92 Capt James Grimm

help
@echo "This A* Search makefile supports the following:"
Qecho " make router - creates executable host, control and worker."
@echo " make host - creates the host part only."
@echo " make worker - creates the node worker part only."
@echo " make control - creates the master controller for the nodes."
@echo " make both - creates the controller and worker parts."
@echo " make clean - removes intermediate files."

router : host control worker

host : host.o
cc -o host host.o -host

control : control.o
cc -o control control.o -node

worker : worker.o
cc -o worker worker.o -node -im

both : control worker

clean :
rm *.o host control worker
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A.3.3 Test Angle Calculation.

-- DATE: 16 Oct 92
-- VERSION: 1.0

-- TITLE: Test Calculation of the Angle Between Two Vectors --

-- FILENAME: TEST-TRIG.C
-- AUTHOR: Capt James J. Grim II
-- COORDINATOR: R. Norris
-- PROJECT: Thesis Research Project --

-- OPERATING SYSTEM: System V
-- LANGUAGE: C
-- FILE PROCESSING: Compile & link with stdio.h, path.h, and math.h --

-- Ensure the program is linked with the math --

-- library using the -lm switch. --

-- FUNCTION: This program finds the angle between to directional --

-- vectors. The parent location along with the vector --

-- used to get to the parent are specified. Each child --

-- location is found and all the information used to --

-- determine if the child can be reached from the parent --
-- are displayed. This code was taken from the worker --

-- program used by the Parallel Mission Routing software. --

-- HISTORY: 1.0 Written by Capt James Grimm to debug a calcualtion --

-- problem while porting the Parallel Mission Routing --
-- software from the iPSC/2 to the iPSC/860. --

* Header Files *

*include <stdio.h> /* Standard I0
#include "/usr/include/math.h" /* Standard math library */
*include "path. h"

Main Program .1
/*s****************************e~ses*eese*se*e*e*********/*

main()

int delta[8] [2], z, c, dsx, d.y, d-z, del-x, del.y, del-z, num.value;

US p-x, p-y, p.z, c-x, c.y, c-z, old.top, newtop;

double numerator, /* Used in angle calculation (acos value) /
denominator, /* Used in angle calculation (acos value) */
fraction, /* Numerator divided by denominator
angle, /* Angle between direction vectors (deg) */
mag-old, /* Magnitude of direction vector to parent */
mag-new; /* Magnitude of direction vector to child */

delta[O][0] = 0 ; delta[O][1] = 1;

delta[1][0] = 1 ; delta[l][1] = 1;
delta[2][0] = I ; delta[2][1) = 0;
delta[3][0] = 1 ; delta[3][1] = -1;
delta[4] [0] = 0 ; delta[4] [1] = -1;
delta[5][0] = -1 ; delta[5][1] - -1;
delta[6][0] = -1 ; delta[6][1] = 0;
delta[7][0] = -1 ; delta[7J[1] = 1;

d-x - 0; /* z component of directional vector */
d-y - -1; /* y component of directional vector */
d-z = -1; /* z component of directional vector */
p-x = 17; /* Parent's x coordinate */
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p-y = 16; /* Parent's y coordinate *
pz= 7; /* Parent's z coordinate *

printf(\n Starting testing \n\n");

for(z = -1; z <= 1; z++)

c-z = (US) ((int) p..z +Z)

for(c - 0; c <= 7; c++)

C =(US) ((int) p-r + delta~c) [0]);
c- (US) ((int) p-y + delta[c] Et));

printf(" P(%d %d %d) C(td %d4%d) ", p-x, p4Y, p-z, c-., c-j, c-z);
delix = (int) c-r - px

del-y = (int) c-y - py

del-z = (int) c-z - pz

printf(" ID(%2d %2d %2d) ", del-x, del..y, deh-z);

new-.top = (del... * del-x. + del..y * del..y + delsz * del..z);
old-top = (d-s * d-x + d-y * d-y + d-z *e-)

mag..nev = sqrt ((double) new-top);
mag-old = sqrt ((double) old-top);

num-value = (d..x * del-x + d..y *deLiy + del-z * -;

printf(" 17(%d) OT(Zd) 3V(X2d) ",new-top, old-top, nun-value);

numerator = (double) num-salue;
denominator = magsold * mag-nes;
fraction = numerator / denominator;
if (fraction > i.0) fraction = 1.0;
if (fraction < -i.0) fraction = -1.0;

printf (" Num(Z4.lf) Den(Z6.4f) Fract(Z7.4f) "

numerator, denominator, fraction);
printf(" N0(XS.3f) R1(Z5.3f) ", mag-old, mag-nev);

angle= acos(fract ion);

angle = angle * 180.0 / ILPI;

printf(' A(Z20.16f) ", angle);
if (angle <- 60.0)

printf(" TRUE');

printf('\n");
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Appendix B. Input Data

B.1 Terrain Data

25 19 1000
1700 1775 2005 2010 2000 2000 2020 2450 3150 2350 2270 2320 2505 2590 2650 3000 2890 2675 2500 2270 2500 2905 2960 2470 2000
1700 2000 2020 2070 2495 3120 3110 3135 2750 2550 2690 2980 3100 3050 3150 3455 3535 3020 2705 2510 2700 3150 3200 3210 2890
1815 2100 2090 2200 3170 3700 3465 2995 2520 2610 2890 3045 3285 3580 3805 4200 4410 3050 3620 2500 2735 3335 3670 3480 3105
2090 2110 2170 2310 3250 4305 3250 2750 2600 2700 2875 3190 3500 3800 4120 4885 4705 2995 3485 2515 2625 3215 3740 3595 3085
2100 2200 2300 2995 3590 3555 3100 2515 2900 3470 3275 3315 3605 4195 4700 5500 3755 3495 3340 2560 2600 3200 3700 3710 3100
2250 2300 2530 3215 3700 3420 2850 2500 3205 3700 3300 3005 3710 4300 5500 4500 3150 3600 3400 2505 2605 3130 3305 3600 3200
2100 2370 2690 3090 3700 3430 2895 2510 3500 4205 3360 3005 3560 4500 5000 3300 3115 3550 3650 3000 2700 2700 3100 3300 3460
2050 2405 2600 3200 3700 3500 2880 2600 3395 4200 3610 3360 33003900 3515 3270 3250 3050 3095 3500 3590 2500 2700 3100 3540
2000 2320 2775 3220 3790 3460 3080 2690 3000 3900 3775 3420 3190 3600 3620 3795 3815 3910 3590 3225 3400 3585 2600 2700 3225
1950 2200 2545 3140 3710 3700 3120 2650 2770 3600 3900 3400 3070 3790 4500 4750 5010 4690 4050 3470 3390 3600 2500 2700 3000
1900 2015 2450 2720 3100 3680 3200 2650 2550 3225 4200 3450 3120 3980 5700 5920 5000 4600 4000 3200 3500 3600 2550 2700 2910
1850 2000 2350 2700 2800 2950 3220 2790 2650 3000 4200 3450 3100 4100 6000 4800 4595 4200 3500 3200 4000 3400 2590 2990 3200
1800 1955 2290 2650 2800 2800 3100 2800 2600 2755 3890 3450 3100 4000 6000 4600 4525 3770 3000 3550 4050 3200 2640 3400 2990
1750 1900 2190 2800 3150 2900 2770 2700 2600 2540 3500 3225 3100 4000 5000 4200 3840 3450 3400 4120 3760 2975 3020 3040 2650
1710 1870 2100 2450 3200 3390 3400 3200 3000 2540 2780 3090 3100 3555 4105 3800 3500 3115 3540 3605 3205 2700 3210 3000 2650
1680 1810 2220 2350 2850 3400 4000 3900 3500 2810 2605 2760 2930 3400 3820 3500 3140 3200 3150 2560 2680 2950 3285 2710 2600
1625 1710 1900 2235 2900 3500 4500 3600 3385 2810 2515 2600 2900 3250 3370 3110 3000 3000 2500 2750 2750 3200 2885 2640 2550
1600 1700 1880 2210 2500 3430 3715 3300 3200 2800 2550 2580 2900 3290 3250 2800 2800 2560 2605 2600 2785 2810 2620 2500 2400
1585 1645 1700 2170 2260 2500 2770 2700 2700 2465 2320 2500 2740 2890 2905 2775 2540 2580 2600 2540 2510 2475 2425 2395 2320
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B.2 Radar Data

25 19 51 1000

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.4 0.6 0.8 1.0 0.8 0.5 0.6 0.7 0.9 1.0 0.9 0.7 0.6 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.6 0.4 0.6 0.7 0.8 0.9 0.8 0.7 0.6 0.4
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.2 0.2 0.4 0.6 0.4 0.2 0.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.6 0.7 0.9 0.7 0.6 0.6 0.9 0.6 0.4 0.6 0.4 0.2 0.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.4 0.6 0.4 0.3 0.4 0.5 0.6 0.6 0.6 0.5 0.4 0.2
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.6 0.4 0.6 0.7 0.8 0.9 0.8 0.7 0.6 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.4 0.6 0.8 1.0 0.8 0.5 0.6 0.7 0.9 1.0 0.9 0.7 0.6 0.4
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.6 0.4 0.6 0.7 0.8 0.9 0.8 0.7 0.6 0.4
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B.3 Air Tasking Order Data

B.3.1 AFIT-OA.

AFIT-0
17 17 8000
10 11 6000
0
4000 14000 MSL

B.3.2 AFIT-IA.

AFIT-1
17 17 8000

1 1 5000
0
4000 14000 MSL

B.3.3 AFIT-GOA.

AFIT-GO
24 16 8000

1 1 5000
0
4000 14000 MSL
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Appendix C. Raw Data

C-1 iPSC/2 (Mission AFIT-1A)

C.1.1 Bounded (Depth = 2).

C.1.1.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST
****** *** *** ******* *** ** ***

Enter name of file containing the terrain data: terraini
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

** Queue length = 401 with q[q.front].cost = 6985.279297 **

** Queue length = 789 with q[q.front].cost = 7039.680176 **

** Queue length = 1127 with q[q-frontl.cost = 7079.480469 **

** Queue length = 1450 with q[qdfront].cost = 7104.679199 **

** Queue length = 1772 with q[qfrontl.cost = 7127.026367 at

** Queue length = 2068 with q[q.front].cost = 7147.752441 **

** Queue length = 2320 with q[qfront].cost = 7166.814941 **

$$ Queue length = 2597 with q[q-front].cost = 7182.460449 **

A Solution Path Has Been Found

lode 1 expanded 1431 states

The Best Route for mission AFIT-1 is:
x y z

17 17 8
16 16 8
15 15 8

14 15 8

13 15 8
12 15 8
11 15 8
10 14 8
9 13 8
8 12 8
7 11 8
6 10 8

5 9 7
5 8 7
5 7 7
4 6 6
4 5 6
3 4 5

3 3 5
2 2 5
1 1 S

C- I



For a total of 21 entries in the route

At a distance of 25924.074219 ( 4.91 miles)

With a radar cost of 2497.056396

And a computed cost of 7182.460449

*** Timing Information ***

Initialize = 0.143 (sec) Find Initial Route = 7.374 (sec)
Searching = 1860.298 (sec) Total Execution = 1867.815 (sec)

Average worker node efficiency 0.755
The controller efficiency was 0.654
** 1431 nodes sent to processors
se 1431 total nodes expanded

('.1.1.2 4 Nodcs.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

** Queue length = 396 with q[q-front].cost = 7049.107422**
** Queue length = 777 with q[q-front].cost = 7104.868652*.

** Queue length = 1129 with q[q-front].cost = 7143.229980*.
** Queue length = 1475 with q[q-frontJ.cost = 7165.334473 **

** Queue length = 1788 with q[q-front].cost = 7185.517578*.
** Queue length = 2087 with q[q-front].cost = 7201.735840*.

A Solution Path Has Been Found

Node 2 expanded 308 states

Lide I expanded 303 states
Node 3 expanded 311 states

The Best Route for mission AFIT-1 is:
x y z

17 17 8
16 16 8
15 15 8
14 15 8
13 15 8
12 15 7
11 15 7
10 14 7

9 13 6
9 12 6

8 11 6
7 10 6



6 9 6
5 8 6
5 7 6
4 6 6
3 5 6
2 4 5
1 3 5
1 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 26020.449219 ( 4.93 miles)

With a radar cost of 2497.056396

And a computed cost of 7201.735840

*** Timing Information ***

Initialize = 0.209 (sec) Find Initial Route = 7.717 (sec)
Searching = 666.375 (sec) Total Execution = 674.301 (sec)

Average worker node efficiency 0.449

The controller efficiency was 0.915
** 922 nodes sent to processors
** 922 total nodes expanded

C. 1.1.3 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

*4 Queue length = 387 with best.cost = 7165.510742 **

** Queue length = 752 with best.cost = 7230.529785 **

4* Queue length = 1119 with best.cost = 7261.066895 **

** Queue length = 1416 with bestacost = 7288.678711 **
4* Queue length = 1727 with beat.cost = 7307.475586 *4

** Queue length = 2031 with best.cost = 7323.992188 *4

*4 Queue length = 2272 with best.cost = 7343.798828 *

4* Queue length = 2527 with best cost = 7360.449219 **

A Solution Path Has Been Found

Node 1 expanded 215 states
lode 4 expanded 219 states
Node 2 expanded 220 states
lode 7 expanded 220 states

Node 3 expanded 219 states
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lode 5 expanded 218 states
Node 6 expanded 218 states

The Best Route for mission AFIT-1 is:
x y z
17 17 8
16 16 7
15 15 7
14 15 7
13 15 7

12 15 7
11 15 7
10 14 7
9 13 7
8 12 7

7 11 7
7 10 7

6 9 7
6 8 7
5 7 6
4 6 6
3 5 6
3 4 6
2 3 5
1 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 25924.074219 ( 4.91 miles)

With a radar cost of 2719.542480

And a computed cost of 7360.449219

*** Timing Information ***

Initialize = 1.179 (sec) Find Initial Route = 8.758 (sec)
Searching = 1292.214 (sec) Total Execution = 1302.151 (sec)

Average worker node efficiency 0.170
The controller efficiency was 0.982
** 1529 nodes sent to processors
*4 1529 total nodes expanded

C.1.2 Bounded (Depth = 3).

C'.1.2.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...
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Received Initial Path with a computed cost of 8429.419922

** Queue length = 401 with q[q.front].cost = 7161.221680 *
as Queue length = 760 with q[q-front].cost = 7223.974609 **

as Queue length = 1101 with q[q.front).cost = 7260.272461 *

** Queue length = 1435 with q[q-front].cost = 7280.907715 **

** Queue length = 1726 with q[q.front].cost = 7305.279297 *$

** Queue length - 1990 with q[q-front] .cost = 7326.933594 *

A Solution Path Has Been Found

Node 1 expanded 1080 states

The Best Route for mission AFIT-1 is:
x y z

17 17 8
17 16 8
16 15 8
15 15 8
14 15 8

13 15 8
12 15 7
11 15 7
10 14 7

9 13 7

8 12 7
7 11 7
7 10 7

6 9 7
6 8 7
5 7 6
5 6 6

4 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 22 entries in the route

At a distance of 26606.236328 ( 5.04 miles)

With a radar cost of 2507.106934

And a computed cost of 7326.933594

*** Timing Information ***

Initialize = 0.145 (sec) Find Initial Route = 16.369 (sec)
Searching = 6149.665 (sec) Total Execution = 6166.179 (sec)

Average worker node efficiency 0.978
The controller efficiency was 0.118
5* 1080 nodes sent to processors
55 1080 total nodes expanded

(C.1. 2.2 4 Nodes.

PARALLEL MISSION ROUTING PROBLEM

(C-5



A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

Qc Queue length = 402 with q[q-front].cost = 7038.552734cc
cc Queue length = 768 with q[q-front].cost = 7083.830078cc
cc Queue length = 1105 with q[q-front].cost = 7114.124023cc
cc Queue length = 1438 with q[q-front].cost = 7142.144531 *c
cc Queue length = 1721 with q[q.front].cost = 7163.830078 cc

*Q Queue length = 1989 with q[q-front].cost = 7182.460449 cc

A Solution Path Has Been Found

lode I expanded 356 states
lode 2 expanded 351 states
Node 3 expanded 363 states

The Best Route for mission AFIT-1 is:
x y z
17 17 8

16 16 8
15 15 8
14 15 8

13 15 8
12 15 8

11 15 8
10 14 8
9 13 8
8 12 8
7 11 8
6 10 7
6 9 7
6 8 7
5 7 6
5 6 6
4 5 5
3 4 5
2 3 5
1 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 25924.074219 ( 4.91 miles)

With a radar cost of 2497.056396

And a computed cost of 7182.460449

*cc Timing Information ***

Initialize = 1.128 (s.•c) Find Initial Route = 18.509 (sec)
Searching = 2235.942 (sec) Total Execution = 2255.579 (sec)

Average worker node efficiency 0.884
The controller efficiency was 0.410
cc 1070 nodes sent to processors
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** 1070 total nodes expanded

C.1.2.3 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

cc Queue length = 377 with best.cost = 7043.543945 cc
cc Queue length = 747 with best.cost = 7097.458008 cc
cc Queue length = 1082 with best.cost = 7125.948242 cc
cc Queue length = 1414 with best.cost = 7149.722656 cc
cc Queue length = 1687 with best.cost = 7176.435547 cc

A Solution Path Has Been Found

Node 4 expanded 140 states
Node 1 expanded 134 states
Node S expanded 139 stetes
Node 2 expanded 138 states

Node 6 expanded 140 states
Node 3 expanded 133 states

Node 7 expanded 144 states

The Best Route for mission AFIT-1 is:
x y z
17 17 8
i3 16 8

15 15 8
14 15 8

13 15 8
12 15 8
11 15 8
10 14 8

9 13 7
8 12 7

7 11 7
6 10 7
6 9 7
6 8 7
5 7 6
5 6 6
4 5 5
3 4 5
2 3 5
1 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 25924.074219 ( 4.91 miles)
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With a radar cost of 2497.056396

And a computed cost of 7182.460449

*** Timing Information ***

Initialize = 0.917 (sec) Find Initial Route = 17.274 (sec)
Searching = 916.968 (sec) Total Execution = 935.159 (sec)

Average worker node efficiency 0.838
The controller efficiency was 0.677
** 968 nodes sent to processors
** 968 total nodes expanded

C.1.3 Bounded (Depth = 4).

C.1.3.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

*$ Queue length = 403 with q[q-front].cost = 7229.051270 **

** Queue length = 755 with q[q-front].cost = 7282.436523 **

** Queue length = 1103 with q[q-front].cost = 7313.320313 **

A Solution Path Has Been Found

Node I expanded 563 states

The Best Route for mission AFIT-1 is:
x y z

17 17 8
17 16 8

16 15 8
15 15 8
14 15 8
13 15 8

12 15 8

11 15 7
10 14 6

9 13 6

8 12 6
8 11 6

7 10 6
7 9 6
6 8 6
6 7 6
5 6 5
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S 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 22 entries in the route

At a distance of 26606.236328 ( 5.04 miles)

With a radar cost of 2507.106934

And a computed cost of 7326.933594

see Timing Information s*e

Initialize = 0.189 (see) Find Initial Route = 60.177 (sec)
Searching = 17045.360 (sec) Total Execution = 17105.727 (sec)

Average worker node efficiency 0.994
The controller efficiency was 0.015
** 563 nodes sent to processors
** 563 total nodes expanded

C.1.3.2 4 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainI

Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a compured cost of 8429.419922

** Queue length = 394 with q[qjfront].cost = 7069.436035 c*
cc Queue length = 756 with q[q-front].cost = 7112.584961 5*

cc Queue length = 1084 with q[qdfront].cost = 7146.831055 **

cc Queue length = 1377 with q[q-front].cost = 7179.375000 *

A Solution Path Has Been Found

Node 1 expanded 251 states
lode 2 expanded 260 states
Node 3 expanded 265 states

The Best Route for mission AFIT-1 is:
x y z
17 17 8
16 16 8

15 15 8
14 15 8
13 15 8
12 15 8
11 15 8
10 14 8
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9 13 8
8 12 8
7 11 8
6 10 7
6 9 7
5 8 6
5 7 6
4 6 5
4 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 25924.074219 ( 4.91 miles)

With a radar cost of 2497.056396

And a computed cost of 7182.460449

*** Timing Information ***

Initialize = 0.209 (sec) Find Initial Route = 61.152 (sec)
Searching = 8079.764 (sec) Total Execution = 8141.125 (sec)

Average worker node efficiency 0.973
The controller efficiency was 0.074
** 776 nodes sent to processors
** 776 total nodes expanded

C.1.3.3 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

** Queue length = 370 with q[q-front].cost = 7069.722656 **

*5 Queue length = 732 with q[q-front].cost = 7123.954590 **

** Queue length = 1078 with q'qfront].cost = 7156.837402**
* Queue length = 1399 with q[q.front].cost = 7182.460449**

A Solution Path Has Been Found

Node 1 expanded 99 states
Node 4 expanded 91 states
Node 2 expanded 93 states

Node 6 expanded 99 states
lode 3 expanded 104 states
Node 5 expanded 100 states
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Bode 7 expanded 93 states

The Best Route for mission AFIT-1 is:

x y z
17 17 8
16 16 8

15 15 8
14 15 8
13 15 8
12 15 8
11 15 8
10 14 8

9 13 8
8 12 8
7 11 7
6 10 7
6 9 7
5 8 6
5 7 6
5 6 6
4 5 5
4 4 5

3 3 5
2 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 25924.074219 ( 4.91 miles)

With a radar cost of 2497.056396

And a computed cost of 7182.460449

*** Timing Information ***

Initialize = 0.376 (sec) Find Initial Route = 61.229 (sec)

Searching = 2884.007 (sec) Total Execution = 2945.612 (sec)

Average worker node efficiency 0.974
The controller efficiency was 0.117
** 679 nodes sent to processors

** 679 total nodes expanded

C.2 iPSC/2 (Mission AFIT-GOA)

C.2.1 Recursion Only (Depth = 3).

C.2.1.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST
****ccc* c cc cc cc* cc ccc ccc* c c********

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA
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Waiting for results ...
** Queue length = 308 with best.cost = 7441.343750 **

** Queue length = 562 with best.cost = 7884.716797 **
** Queue length = 813 with best.cost = 8179.139160 **

** Queue length = 1088 with best.cost = 8414.400391 **

** Queue length = 1374 with best.cost = 8586.919922 **

** Queue length = 1616 with best.cost = 8767.997070 **
** Queue length = 1875 with best.cost = 8899.986328 **

** Queue length = 2104 with best.cost = 9047.362305 **
** Queue length = 2377 with best.cost = 9152.572266 **

** Queue length = 2652 with best.cost = 9253.708984 **
** Queue length = 2942 with best.cost = 9332.996094 **
** Queue length = 3260 with best.cost = 9388.378906 **
** Queue length = 3584 with best.cost = 9421.083984 ss
*5 Queue length = 3908 with best.cost = 9449.775391 ss

5* Queue length = 4209 with best.cost = 9470.197266 ss
*5 Queue length = 4533 with best.cost = 9490.113281 *s
*5 Queue length = 4843 with best.cost = 9508.447266 s*
5* Queue length = 5159 with best.cost = 9522.035156 *6

$* Queue length = 5447 with best.cost = 9534.190430 **
** Queue length = 5708 with best.cost = 9550.009766 'C

QC Queue length = 6000 with best.cost = 9560.248047 *s

CC Queue length = 6278 with best.cost = 9571.906250 *S
CC Queue length = 6545 with best.cost = 9581.730469 s*

** Queue length = 6814 with best.cost = 9591.373047 ss
*5 Queue length = 7025 with best.cost = 9603.826172 C,

5* Queue length = 7300 with best.cost = 9610.816406 es
** Queue length = 7515 with best.cost = 9619.933594 CC

** Queue length = 7796 with best.cost = 9627.179688 **
** Queue length = 7991 with best.cost = 9635.562500 **

C* Queue length = 8209 with best.cost = 9643.138672 **
** Queu- length = 8418 with best.cost = 9652.355469 **

** Queue length = 8590 with best.cost = 9660.357422 **
** Queue length = 8878 with best.cost = 9664.815430 **

A Solution Path Has Been Found

Bode 1 expanded 7669 states

The Best Route for mission AFIT-GO is:

x y z
24 16 8
24 17 8

24 18 8
23 19 8
22 19 8
21 19 8
20 19 8
19 19 8

18 19 8
17 19 8
16 19 8
15 19 8
14 19 8
13 19 8
12 19 8
11 18 8
10 17 8
10 16 8

9 15 8

9 14 8
8 13 8
8 12 8
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7 11 8
6 10 7
6 9 7

6 8 7
5 7 6
5 6 6
4 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ***

Initialize = 0.208 (sec) Find Initial Route = 0.000 (sec)
Searching = 37621.738 (sec) Total Execution = 37621.946 (sec)

Average worker node efficiency 0.878
The controller efficiency was 0.450
** 7669 nodes sent to processors
** 7669 total nodes expanded

C.2.1.2 4 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter ncme of file containing the terrain data: terrainA

Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...
cc Queue length = 308 with best.cost = 7582.110840 *

Q* Queue length = 567 with best.cost = 8009.636719 **

Q* Queue length = 835 with best.cost = 8309.082031 *

cc Queue length = 1130 with best.cost = 8521.951172 **

** Queue length = 1415 with best.cost = 8690.030273 cc
cc Queue length = 1673 with best.cost = 8848.114258 cc

Q* Queue length = 1923 with best.cost = 8998.019531 *

cc Queue length = 2181 with best.cost = 9114.445313 CC

cc Queue length = 2437 with best.cost = 9225.193359 CC

cc Queue length - 2721 with best.cost = 9318.757813 cc
c Queue length - 3030 with best.cost = 9388.451172 cc

CC Queue length - 3361 with best.cost = 9431.350586 C

CC Queue length - 3680 with bebt.cost = 9463.058594 C

CC Queue length = 4008 with best.cost = 9488.949219cc

CQ Queue length = 4353 with best.cost = 9505.761719 CC

cc Queue length = 4671 with best.cost = 9523.263672 cc
CC Queue length = 4977 with best.cost = 9539.441406 C
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*c Queue length = 5268 with best.cost = 9553.373047 cc
cc Queue length = 5555 with best.cost = 9566.025391 cc
,* Queue length = 5808 with best.cost = 9580.183594 cc
cc Queue length = 6114 with best.cost = 9587.871094 cc
cc Queue length = 6337 with best.cost = 9601.005859 cc
cc Queue length = 6622 with best.cost = 9610.727539 **
cc Queue length = 6867 with best.cost = 9619.787109 **

** Queue length = 7139 with best.cost = 9629.185547 *

** Queue length = 7307 with best.cost = 9639.515625 cc
cc Queue length = 7577 with best.cost = 9647.749023 cc
cc Queue length = 7755 with best.cost = 9656.598633 cc
cc Queue length = 7994 with best.cost = 9664.815430 cc

A Solution Path Has Been Found

lode 2 expanded 2176 states
lode 1 expanded 2174 states
Node 3 expanded 2227 states

The Best Route for mission AFIT-GO is:
x y z
24 16 8
24 17 8
24 18 8
23 19 7
22 19 7
21 19 7
20 19 7
19 19 7
18 19 7
17 19 7
16 19 7
15 19 7
14 19 7
13 19 7
12 19 7
11 18 7
10 17 7
10 16 7

9 15 7
9 14 7
8 13 7

7 12 7
7 11 7
6 10 7

5 9 7
4 8 7
4 7 7
3 6 6
2 5 5
2 4 5
2 3 5
1 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

ccc Timing Information ccc
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Initialize = 0.401 (see) Find Initial Route = 0.000 (sec)
Searching = 15622.431 (see) Total Execution = 15622.833 (sec)

Average worker node efficiency 0.603
The controller efficiency was 0.857
** 6577 nodes sent to processors

** 6577 total nodes expanded

C.2.1.3 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...
** Queue length = 296 with best.cost = 7609.605957 *,

** Queue length = 566 with best.cost = 8041.794922 **
** Queue length = 837 with best.cost = 8319.119141 **

** Queue length = 1137 with best.cost = 8532.348633 **

** Queue length = 1415 with best.cost = 8700.539063 *
** Queue length = 1662 with best.cost = 8862.101563 **
55 Queue length = 1894 with best.cost = 9024.01562C SS

SS Queue length = 2158 with best.cost = 9144.931641 **
*5 Queue length = 2413 with best.cost = 9258.319336 *

5* Queue length = 2710 with best.cost = 9353.810547 **

** Queue length = 3006 with best.cost = 9425.052734 *5
* Queue length = 3324 with best.cost = 9470.175781 ss

55 Queue length = 3662 with best.cost = 9502.188477 ss
St Queue length = 4007 with best.cost = 9524.861328 *5

** Queue length = 4319 with best.cost = 9545.985352 55

*5 Queue length = 4642 with best.cost = 9563.847656 5.

*5 Queue length = 4917 with best.cost = 9581.415039 *

*5 Queue length = 5241 with best.cost = 9592.796875 *

** Queue length = 5503 with best.cost = 9609.084961 ss
** Queue length = 5793 with best.cost = 9617.133789 ss
5* Queue length = 6096 with best.cost = 9628.183594 **

** Queue length = 6316 with best.cost = 9639.714844 **

Se Queue length = 6627 with best.cost = 9646.583984 SS

55 Queue length = 6819 with best.cost = 9657.080078 *
es Queue length = 7102 with best.cost = 9666.840820 **
eS Queue length - 7336 with best.cost = 9673.228516..

55 Queue length = 7605 with best.cost = 9681.004883 *5
5* Queue length = 7818 with best.cost = 9688.641602 *

5* Queue length = 8003 with best.cost = 9699.158203 *5

** Queue length = 8195 with best.cost = 9706.238281 55

*5 Queue length = 8387 with best.cost = 9712.244141 55

A Solution Path Has Been Found

Node 4 expanded 1062 states
Node 2 expanded 1041 states
lode 1 expanded 1029 states
Node 6 expanded 1063 states
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lode 3 expanded 1059 states
lode 5 expanded 1033 states

lode 7 expanded 1051 states

The Best Route for mission AFIT-GO is:
x y •

24 16 8
24 17 7
24 18 7
23 19 6
22 19 6
21 19 6
20 19 6
19 19 6
18 19 6
17 19 6
16 19 6
15 19 6
14 19 6
13 19 6
12 19 6
11 18 6
11 17 6
11 16 6
11 15 6
10 14 6
9 13 6
9 12 6
9 11 6
9 10 6
8 9 6
7 8 6
6 7 6
5 6 6
4 5 5
3 4 5
2 3 5
1 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 38020.453125 ( 7.20 miles)

With a radar cost of 2641.421387

And a computed cost of 9717.227539

*** Timing Information ***

Initialize = 0.306 (sec) Find Initial Route = 0.000 (sec)
Searching - 16084.236 (sec) Total Execution * 16084.542 (sec)

Average worker node efficiency 0.281
The controller efficiency was 0.975
$* 7338 nodes sent to processors
$$ 7338 total nodes expanded

C.-2.2 Bounded (Depth = 2).
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C.2.2.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data :radar&
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.822266

**Queue length = 333 with q[q..front].cost = 7266.160156 *

**Queue length = 564 with q[q..front].cost = 7601.870117 *

CCQueue length = 788 with q~q-frontj.cost = 7866.041016 *

**Queue length = 1058 with q[q~front) .cost =8053.227539 *

**Queue length = 1322 with q~q..front] .cost =8230 949219 *

CCQueue length =1580 with q[q-frontJ.cost =8398.573242 *

**Queue length = 1833 with q[q-frontJ .cost =8538.597656 *

**Queue length = 2044 with q[q-front].cost =8684.550781 *

**Queue length = 2285 with q~q-front) .cost =8799.604492 *

**Queue length =2526 with q[q-frontj cost =8910.072266*
**Queue length - 2781 with q~q..front].cost 9008.322266*

**Queue length = 3014 with q[q~front].cost =9101.886719 *

**Queue length = 3289 with q[q..front] .cost =9173.628906 *

CCQueue length = 3550 with q~q..front] .cost =9245.269531 *

**Queue length =3812 with q[q-frontj.cost =9309.577148 *

**Queue length = 4122 with q[q-front] .cost =9353.876953 *

**Queue length = 4442 with q[q..front] .cost =9388.384766 *

**Queue length = 4735 with q[q-front] .cost =9418.152344 *

CeQueue length = 5047 with q~q..front] .cost =9443.759766 *

**Queue length = 5350 with q[q-jrontl.cost =9463.954102 *

**Queue length = 5659 with q[q-frontj.cost =9480.816406v

**Queue length = 5958 with q[q..frontJ.cost =9495.279297 *

CCQueue length = 6241 with q~q..front] .cost =9509.697266 C

**Queue length = 6536 with q[q..front] .cost = 9522.298828 *

CCQueue length = 6814 with q[q-front] .cost = 9533.441406 *

**Queue length = 7062 with qrq-frontJ.cost = 9547.046875 *

**Queue length = 7314 with q[q-frontl.cost = 9557.781250 *

**Queue length - 7562 with q[q-front] .cost = 9567.758789 *

**Queue length = 7794 with q[q..Iront] .cost = 9578.824219 *

**Queue length - 8027 with q[q..front].cost = 9587.871094C

CCQueue length = 8280 with q[q-front) .cost = 9597.011719 C

**Queue length = 8483 with q~q-front]-cost = 9606.309570 C

CCQueue length - 8745 with q[q-.frontJ.cost - 9614.044922 *

CCQueue length - 8959 with q[q..front].cost = 9621.005859*
CCQueue length - 9190 with q[q-front] .cost - 9629.029297 C

CCQueue length - 9369 with q[q-fron~t] cost = 9636.249023 C

<<< Performing Beam Search Reduction >>>
**Queue length a5796 with q[q-frontj.cost = 9643.409180*

**Queue length = 6065 with q[q-frontl.cost = 9649.345703C

CCQueue length = 6321 with q[q-frontJ cost = 9655.517578C
CCQueue length -6538 with q[q..frontj cost = 9662.332031C

A Solution Path Has Been Found

Node I expanded 9837 states

The Beat Route for mission AFIT-GO is:

x 7 z
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24 16 8
24 17 8
24 18 8
23 19 8
22 19 8
21 19 8

20 19 8
19 19 8

18 19 8
17 19 8
16 19 8
15 19 8
14 19 8
13 19 8
12 19 8
11 18 8
10 17 8
9 16 8
9 15 8

8 14 8
8 13 8
7 12 8

7 11 8

6 10 8
5 9 7
5 8 7
5 7 7
4 6 6
4 5 6

3 4 5
3 3 5

2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ***

Initialize = 0.207 (sec) Find Initial Route = 8.101 (sec)

Searching = 26158.732 (sec) Total Execution = 26167.040 (sec)

Average worker node efficiency 0.304
The controller efficiency was 0.926
cc 9837 nodes sent to processors
** 9837 total nodes expanded

C.2.3 Bounded (Depth = 3).

C. 2.3.1 Sequential.

PARALLEL NISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

C 5*5*see ccccccccccccccc c c 18



Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data :radark
Enter name of file containing the Air Tasking Order (ATO) : AFIT-GOA
Found an initial route with a cost of 15976.822266
cCQueue length = 331 with q[q-frontt).cost = 7406.125000 *

CCQueue length = 600 with q[q-front).cost = 7844.255859*
CCQueue length = 851 with q~q..frout].cost = 8166.993164

**Queue length = 1140 with q[q-front].cost = 8406.011719 *

ccQueue length = 1432 with q[q..front] .cost = 8586.857422 C

**Queue length = 1689 with q~q..front].cost = 8770.251953*

CCQueue length = 1970 with q[q-frontl cost = 8904.486328 C

CCQueue length = 2203 with q~q..frontl .cost = 9049.735352 C

CCQueue length =2470 with q~q..front] .cost = 9162.396484 C

**Queue length = 2741 with q[q..front] .cost = 9267.192383 C

CCQueue length = 3038 with q[q..front] .cost = 9347.765625 C

CCQueue length =3366 with q[q-front) .cost = 9395.030273
CCQueue length =3683 with qrq-frontj .cost = 9430.966797 C

CCQueue length = 4000 with q[q-frontJ .cost = 9457.712891 c
CCQueue length =4310 with q[q..front] .cost = 9477.431641 C

CCQueue length = 4642 with q~q..front].cost = 9495.966797C
CCQueue length = 4932 with q[q~front].cost = 9513.947266 C

CCQueue length =5238 with q~q..front].cost = 9529.002930C
ccQueue length -5508 with q[q..front].cost = 9544.652344C
CCQueue length = 5801 with q~q-frontJ .cost = 9556.470703 C

CCQueue length a6093 with q[q-front) cost = 9566.933594 C

CCQueue length = 6334 with q[q-front].cost = 9579.609375C
ccQueue length =6625 with q[q-front].cost = 9587.034180C
CCQueue length = 6851 with q~q..front].cost = 9598.890625 C

CCQueue length = 7108 with q[q-front] .cost = 9608.302734 ~
CCQueue length = 7386 with q[q-.front] .cost = 9616.025391 C

ccQueue length =7623 with q~q..front).cost = 9625.076172C
CCQueue length =7853 with q~q-front].cost = 9634.159180C
CCQueue length =8038 with q~q-jrontJ.cost = 9641.689453C
CCQueue length =8257 with q[q-front) .cost = 9650.599609 C

CCQueue length =8418 with q[q..front] .cost = 9660.367422 C

csQueue length a8710 with q[q..frontl.cost = 9664.815430C

A Solution Path Has Been Found

The Best Route for mission AFIT-GO is:
x y z
24 16 8
24 17 8
24 18 8

23 19 8
22 19 8
21 19 8
20 19 8
19 19 8
18 19 8

17 19 8
16 19 8
15 19 8
1'A !9 8
13 19 8
12 19 8
11 18 8

10 17 8
10 16 8

9 15 8
9 14 8
8 13 8
8 12 8
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7 11 8
6 10 7
6 9 7
6 8 7
5 7 6
5 6 6
4 5 5
4 4 5
3 3 5
2 2 5

1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ccc

Initialize = 7.636 (sec) Find Initial Route = 13.431 (sec)
Searching = 49207.111 (sec) Total Execution = 49228.178 (sec)

*c 7337 Nodes Expanded

C.2.3.2 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST
ccc*cccc*c*cccccc*ccccccccc*cc*ccccc

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.822266

cQ queue length = 301 with q[q.front].cost = 7467.415039cc
cc Queue length = 558 with qrq-frontj.cost = 7898.970215 cc
cc Queue length = 803 with q[q-front].cost = 8230.949219cc
cc Queue length = 1093 with q[q-front].cost = 8457.738281 cc
cc Queue length = 1362 with q~q-front].cost = 8638.250000cc
cc Queue length = 1613 with q[q.front].cost = 8820.671875 cc
cc Queue length = 1865 with q[q-front].cost = 8961.335938cc
cc Queue length = 2106 with q[q-front].cost = 9095.164063 C
cc Queue length = 2371 with q[q-front].cost = 9207.203125 cc
cc Queue length = 2653 with q[q-front].cost = 9302.675781cc
cc Queue length = 2963 with q[q-front].cost = 9370.462891 cc
cc Queue length = 3288 with q[q.front].cost = 9411.371094cc
cc Queue length = 3615 with q[q-front].cost = 9440.624023 cc
cc Queue 1-'th = 3921 with q[q-front].cost = 9467.037109cc
cc Queue length = 4230 with q[q-front].cost = 9489.152344 cc
cc Queue length = 4560 with q[q-front].cost - 9504.233398 cc
cc Queue length - 4866 with q(q-front].cost = 9520.907227 ec
cc Queue length a 5150 with q[q-front].cost = 9533.441406cc
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cc Queue length = 5412 with q[q-frontJ.cost = 9549.185547 **

cc Queue length = 5702 with q~q_front] .cost = 9559.512695 **

** Queue length = 5984 with q[q-front].cost = 9571.066406cc
cc Queue length = 6245 with q[q_front].cost = 9582.477539cc
cc Queue length = 6499 with q(q.front].cost = 9592.437500 **

cc Queue length = 6709 with q[q-front].cost = 9606.105469 cc
cc Queue length = 6984 with q[q-front].cost = 9613.125000 **

cc Queue length = 7222 with q[qfront].cost = 9621.535156cc
*c Queue length = 7482 with q[q-front].cost = 9629.344727 cc
cc Queue length = 7662 with q[q_front].cost = 9638.539063 cc
cc Queue length = 7888 with q[q.front].cost = 9648.041992cc
cc Queue length = 8079 with q[q.front].cost = 9656.137695cc
cc Queue length = 8264 with q[q-front].cost = 9664.815430 cc

A Solution Path Has Been Found

lode 1 expanded 7336 states

The Best Route for mission AFIT-GO is:

x y z
24 16 8
24 17 8
24 18 8
23 19 8
22 19 8
21 19 8
20 19 8
19 19 8
18 19 8
17 19 8
16 19 8
15 19 8
14 19 8
13 19 8

12 19 8
11 18 8

10 17 8
10 16 8
9 Is 8
9 14 8
8 13 8

8 12 8

7 11 8
6 10 7
6 9 7

6 8 7

5 7 6
5 6 6
4 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

Vith a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information *c*

Initialize = 0.142 (sec) Find Initial Route 18.806 (sec)
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Searching = 37282.756 (sec) Total Execution s 37301.704 (sec)

Average worker node efficiency 0.896
The controller efficiency was 0.408
** 7336 nodes sent to processors
** 7336 total nodes expanded

C. 2.3.3 4 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.822266

** Queue length = 310 with q[q-front].cost = 7661.596703 **

** Queue length = 570 with q[q.front].cost = 8116.042969 **

** Queue length = 850 with q[q-front].cost = 8418.626953 **

** Queue length = 1138 with q[q-front].cost = 8620.270508 **
** Queue length = 1397 with q[q-front).cost = 8820.671875 *4

** Queue length = 1648 with qCq.front].cost = 8988.954102 **
** Queue length = 1903 with q[q.front].cost = 9130.094727 *

** Queue length = 2164 with q[q-front].cost = 9250.732422 *
*4 Queue length = 2441 with q[q.front].cost = 9359.2148444*
4* Queue length = 2751 with q[q-frontJ.cost = 9432.7460944*
4* Queue length = 3083 with q[q-front].cost = 9474.386719 *

** Queue length = 3432 with q[q.front].cost = 9503.0136724*
** Queue length = 3755 with q[q.front].cost = 9529.0029304*
*4 Queue length = 4062 with q[q-front].cost = 9551.070313*4
** Queue length = 4386 with qrq-front].cost = 9567.2832034*
** Queue length = 4683 with q[q.front] .cost = 9584.219727 *

** Queue length = 4992 with q[q-front].cost = 9595.220703*4
** Queue length = 5281 with q[q-front].cost = 9610.994141 **
4* Queue length = 5572 with q[qjfront].cost = 9619.8417974*
44 Queue length = 5863 with q[q-front].cost = 9630.851563 *
4* Queue length = 6104 with q[q.front].cost = 9643.592773 **

*Q queue length = 6389 with q[q-front].cost = 9650.250000 *

** Queue length = 6640 with q[q.front].cost = 9661.626953**
4* Queue length = 6867 with q~q-front].cost = 9672.0576174*
*4 Queue length = 7132 with q[q-front].cost = 9678.925781 **
4* Queue length = 7363 with q[q.front].cost - 9687.771484 *

** Queue length = 7550 with q[q.front].cost = 9698.201172 **

4* Queue length = 7760 with q[q-front].cost = 9706.238281 **
** Queue length = 7931 with q[qjfront].cost = 9713.343750*4

A Solution Path Has Been Found

Node I expanded 2254 states
Node 2 expanded 2260 states
Node 3 expanded 2242 states

The Best Route for mission AFIT-GO is:
x y z
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24 16 8
24 17 8
24 18 8
23 19 7
22 19 6
21 19 6
20 19 6
19 19 6
18 19 6
17 19 6
16 19 6
15 19 6

14 19 6
13 19 6
12 19 6

11 18 6
11 17 6

10 16 6
9 15 6
9 14 6

8 13 6
7 12 6
6 11 6
5 10 6
5 9 6
4 8 6
3 7 6
3 6 6
2 5 5
2 4 5
2 3 5
1 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 38020.445313 ( 7.20 miles)

With a radar cost of 2641.421387

And a computed cost of 9717.227539

*** Timing Information ***

Initialize = 0.250 (sec) Find Initial Route = 19.177 (sec)
Searching = 16306.274 (sec) Total Execution = 16325.701 (sec)

Average worker node efficiency 0.632
The controller efficiency was 0.835
* 6756 nodes sent to processors
** 6756 total nodes expanded

C.2.3.4 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
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Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received :aitial Path with a computed cost of 15976.822266

44 Queue length = 283 with q[q.front].cost = 7536.276855 **

*4 Queue length = 543 with q[q.front],cost = 7966.5244144*
4* Queue length = 800 with q[q-front].cost = 8274.081055 *
*4 Queue length = 1085 with q[q.front].cost = 8487.898438 *
*4 Queue length = 1352 with q[qjfront],cost = 8673.411133 *4
*4 Queue length = 1620 with q[qjfront].cost = 8840.985352 44

*4 Queue length = 1868 with q[qjfront].cost = 8989.35058644
*4 Queue length = 2109 with q[qjfront],cost = 9119.822266 *
*4 Queue length = 2376 with q[qdfront],cost = 9230.203125 *
*4 Queue length = 2671 with q[qsfront].cost = 9313.728516*4
4* Queue length = 2983 with q[qjfront],cost = 9376.520508 *4
*4 Queue length = 3303 with q[q-front].cost = 9417.193359 *
4* Queue length = 3627 with q[q-front].cost = 9447.9208984*
4* Queue length = 3933 with q[q-front].cost = 9469.876953 *4

*4 Queue length = 4255 with q[q-front].cost = 9490.113281 *4

*4 Queue length = 4560 with q[qsfront].cost = 9509.0937504*
*4 Queue length = 4878 with q[q-front].cost = 9522.298828*4
*4 Queue length = 5161 with q[qjfront].cost = 9536.858398 *

** Queue length = 5417 with q[q.front].cost = 9551.557617*4
** Queue length = 5707 with q[q-front].cost = 9561.313477**
** Queue length = 5983 with q[qfront] .cost = 9574.377930 *

*4 Queue length = 6252 with q[q-front].cost = 9583.893555**

44 Queue length = 6514 with q[qdfront].cost = 9593.556641 **

** Queue length = 6714 with q[q.front].cost = 9606.309570 *
44 Queue length = 6990 with q[q-front].cost = 9614.4277344*
** Queue length = 7217 with q[q_front].cost = 9623.158203 *
*4 Queue length = 7479 with q[qjfront].cost = 9630.943359 44

4* Queue length = 7657 with q[q-front].cost = 9639.456055 *
*Q Queue length = 7884 with q[q.front].cost = 9648.460938*4
4* Queue length = 8061 with q[q-front].cost = 9657.72656344
44 Queue length = 8280 with q[q.front].cost = 9664.815430 *

A Solution Path Has Been Found

Node 1 expanded 1036 states
lode 4 expanded 1046 states
Node 2 expanded 1045 states
lode 5 expanded 1028 states
lode 3 expanded 1057 states
lode 6 expanded 1051 states
Node 7 expanded 1043 states

The Best Route for mission AFIT-GO is:

x y z
24 16 8
24 17 8
24 18 8
23 19 8
22 19 8
21 19 8
20 19 8
19 19 8
18 19 8
17 19 8

16 19 8
15 19 8
14 19 8
13 19 8
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12 19 8
11 18 8
11 17 8
11 16 8

10 15 8
9 14 8

9 13 8
8 12 8
7 11 8
6 10 8
6 9 8
6 8 8
5 7 7
4 6 6
3 5 5
3 4 5
2 3 5
1 2 6
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ***

Initialize = 0.290 (see) Find Initial Route = 19.457 (sec)
Searching = 15677.566 (sec) Total Execution = 15697.313 (sec)

Average worker node efficiency 0.304
The controller efficiency was 0.969
** 7306 nodes sent to processors
** 7306 total nodes expanded

C.2.4 Bounded (Depth = 4).

C.2.4.1 2 Nodes.

PARALLEL NK-SIO1 ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.822266

s* Queue length - 292 with q[q-front].cost = 7782.239258 **
** Queue length = 564 with q[q-front].cost = 8350.895508 **
s* Queue length = 837 with q[q-front].cost = 8669.387695 s*
*s Queue length = 1131 with q[q-front].cost = 8885.212891 *s
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so Queue length = 1401 with q[q-front].cost = 9085.833008 ee

so Queue length - 1671 with q[q-front].cost = 9248.910156 so
so Queue length = 1960 with q[q-front].cost - 9351.014648 so
so Queue length - 2297 with q[q-front].cost = 9411.905273 so
*c Queue length = 2629 with q[q.front].cost = 9450.676758 sc
cc Queue length = 2943 with q[qfront].cost = 9480.691406 so
so Queue length = 3275 with q[q-front].cost = 9503.215820 sc
cc Queue length = 3587 with q[q.front].cost = 9522.298828 cc

sc Queue length - 3873 with q[q.front].cost = 9544.767578 cc
cc Queue length - 4192 with q[q-frontl.cost = 9556.672852 so

cc Queue length - 4488 with q[q-front].cost = 9569.970703 cc
cc Queue length = 4764 with q[q-front].cost = 9582.477539 cc
so Queue length = 5045 with q[q.front].cost = 9595,438477 so
so Queue length = 5270 with q[q-front] cost = 9608.302734 cc
c* Queue length - 5546 with q[q-front].cost = 9616.287109 cc
so Queue length - 5803 with q[q.front].cost - 9627.950195 so
cc Queue length = 6030 with q[q-front] cost = 9638.064453 sc

cc Queue length = 6279 with q[q.front] cost = 9648.165039 so
sc Queue length = 6472 with q[q-front] .cost = 9658.283203 so
cc Queue length = 6749 with q[q.front].cost = 9664.815430 so

A Solution Path Has Been Found

lode 1 expanded 5354 states

The Best Route for mission AFIT-GO is:
x y Z
24 16 8
24 17 8
24 18 8
23 19 8
22 19 8
21 19 8

20 19 8
19 19 8
18 19 8
17 19 8
16 19 8

15 19 8
14 19 8
13 19 8
12 19 8
11 18 8
11 17 8

10 16 8
10 15 8

9 14 8

9 13 8
8 12 8
7 11 7
7 10 7
7 9 7
6 8 6
6 7 6

5 6 5
S 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.078125 ( 7.18 miles)



With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ***

Initialize = 0.180 (sec) Find Initial Route = 73.364 (sec)
Searching = 137152.444 (sec) Total Execution = 137225.988 (sec)

Average worker node efficiency 0.988

The controller ifficiency gas 0.068
*c 5354 nodes sent ;u processors
** 5354 total nodes expanded

(7C2.4"2 4 Nodes.

PARALLEL MISSION ROUTI 1 G PROBLEM

A, USING CENTRALIZED LIST

Ente- name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.822266

cQ queue length = 310 with q[q-front].cost = 7942.277344 **
cc Queue length = 587 with q[q-front].cost = 8465.471680cc
** Queue length = 870 with q[q-front].cost = 8747.261719cc
cc Queue length = 1149 with q[q.front].cost = 8975.073242cc
cc Queue length = 1411 with q[q.frontl.cost = 9171.890625cc
cc Queue length = 1702 with q[q-front].cost = 9304.623047 **
cc Queue length = 2010 with q[q.front).cost = 9388.378906 *c
cc Queue length = 2351 with q[q-front].cost = 9433.945313 cc
cc Queue length = 2676 with q[q-front].cost = 9469.8769,3 cc
cc Queue length = 3020 with q[q.front].cost = 9490.691406 **

cc Queue length = 3332 with q[q-front].cost = 9519.025391 cc
cc Queue length = 3646 with q[q.front].cost = 9532.197266cc
cc Queue length = 3940 with q[q-front].cost = 9551.791016cc
cc Queue length = 4241 with q[q-front].cost = 9566.304688 cc
cc Queue length = 4496 with q[q-front].cost = 9580.396484 cc
cc Queue length = 4812 with q[q.front].cost = 9589.105469 **

cc Queue length = 5020 with q[q.front].cost = 9606.105469 cc
cc Queue length = 5310 with q[q-front].coat = 9614.427734 cc
cc Queue length = 5555 with q[q.front].cost = 9624.500000cc
cc Queue length = 5800 with q[q-front].cost = 9635.359375cc
cc Queue length = 6016 with q[q-frontl.cost = 9646.025391 cc
cc Queue length = 6249 with q[q.front].cost = 9654.634766 cc
cc Queue length = 6444 with q[q.front].cost = 9664.815430 cc
cc Queue length = 6798 with q[q-front].cost = 9664.815430cc

A Solution Path Has Been Found

Node 2 expanded 1721 states
Node 1 expanded 1745 states
Node 3 expanded 1744 states
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The Best Route for mission AFIT-GO is:
x y z
24 16 8
24 17 8
24 18 8
23 19 8
22 19 8
21 19 8
20 19 8
19 19 8
18 19 8
17 19 8
16 19 8

15 19 8
14 19 8

13 19 8
12 19 8
11 18 8
10 17 8

9 16 8
8 15 8
7 14 8
6 13 8
5 12 8
4 11 7
3 10 7

3 9 7
2 8 6
2 7 6
1 6 5
1 5 5
1 4 5
1 3 5
1 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.070313 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

5** Timing Information *e*

Initialize = 0.148 (sec) Find Initial Route = 73.664 (sec)
Searching = 45295.759 (sec) Total Execution = 45369.571 (sec)

Average worker node efficiency 0.981
The controller efficiency was 0.198

6* 5210 nodes sent to processors
$$ 5210 total nodes expanded

C.2.4.3 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

As USING CENTRALIZED LIST

C-2S



Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radark
Enter name of file containing the Air Tasking Order (UTO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.822266

cc Queue length = 287 with q[q-front].cost = 7942.958496 **
** Queue length = 571 with q[q-front].cost = 8438.163086**
** Queue length = 850 with q[q-front].cost = 8716.149414 **

** Queue length = 1143 with q~q-front].cost = 8932.820313*.
** Queue length = 1398 with q[q.front].cost = 9127.625977*.
** Queue length = 1670 with q[q-front].cost = 9283.896484 **

** Queue length = 1961 with q[q-front].cost = 9384.240234 **

** Queue length = 2301 with q~q-front].cost = 9451.109375 **
cc Queue length = 2631 with q[q-front].cost = 9489.152344*.
** Queue length = 2961 with q[q-front].cost = 9516.497070 **

** Queue length = 3265 with q[q.front].cost = 9541.361328*.
** Queue length = 3582 with q[q-front].cost = 9558.315430 cc
** Queue length = 3871 with q[q-front].cost = 9573.319336**
** Queue length = 4141 with q[q.front].cost = 9587.163086*.
** Queue length = 4427 with q[q-front].cost = 9599.671875 **

** Queue length = 4708 with q[q-front].cost = 9612.832031 **
** Queue length = 4963 with q[q-front].cost = 9623.306641 **
** Queue length = 5245 with q[q-front] .cost = 9634.142578 **
c. Queue length = 5487 with q[q-front].cost = 9645.131836 *.

** Queue length = 5784 with q[q-front].cost = 9652.620117*.
** Queue length = 5992 with q[q-front].cost = 9661.923828*
** Queue length = 6192 with q[q-front].cost = 9673.830078 *

** Queue length = 6393 with q[q-front].cost = 9682.435547 c*

A Solution Path Has Been Found

Node I expanded 744 states
Node 4 expanded 751 states
Node 3 expanded 743 states

lode 6 expanded 749 states
Node 2 expanded 744 states
Node S expanded 759 states
Node 7 expanded 755 states

The Best Route for mission AFIT-GO is:
x y z
24 16 8
24 17 8
24 18 7
23 19 6
22 19 6
21 19 6
20 19 6
19 19 6
18 19 6

17 19 6
16 19 6

15 19 6
14 19 6
13 19 6
12 19 6

11 18 6
10 17 6
9 16 6
a 15 6
8 14 6
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7 13 6
6 12 6
5 11 6
4 10 6
4 9 6
3 8 6
2 7 6
1 6 5
1 5 5
1 4 5

1 3 5
1 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 38020.445313 ( 7.20 miles)

With a radar cost of 2600.000000

And a computed cost of 9684.090820

*** Timing Information c**

Initialize = 0.168 (sac) Find Initial Route = 73.936 (sec)
Searching = 19856.748 (sec) Total Execution = 19930.852 (sec)

Average worker node efficiency 0.957
The controller efficiency was 0.442
** 5245 nodes sent to processors
e, 5245 total nodes expanded

C.3 iPSC/860 (Mission AFIT-1A)

C.A.1 Bounded (Depth = 3).

C.3.1.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ..

Received Initial Path with a computed cost of 8429.419922

*e Queue length = 417 with q[q-front].cost = 7140.098145 **
Ce Queue length - 797 with q[q-front].cost = 7214.195313..

CC Queue length = 1167 with q[q-front].cost = 7251.303711 C*

Ce Queue Tength = 1506 with q[q-front].cost = 7276.545898 Ce

CC Queue length = 1843 with q[q.front].cost = 7293.732422 **
Ce Queue length = 2128 with q[q-front].cost = 7315.572266cC
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A Solution Path Has Been Found

lode I expanded 1054 states

The Best Route for mission AFIT-1 is:
x y z

17 17 8
17 16 8
16 15 8

15 15 8
14 15 8
13 15 8

12 15 7
11 15 7

10 14 6
9 13 6
8 12 6
7 11 6
7 10 6
6 9 6
6 8 6
5 7 6
5 6 6
4 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 22 entries in the route

At a distance of 26606.234375 ( 5.04 miles)

With a radar cost of 2507.106689

And a computed cost of 7326.933105

*** Timing Information ***

Initialize = 0.184 (sec) Find Initial Route = 5.905 (sec)
Searching = 2890.961 (sec) Total Execution = 2897.050 (sec)

Average worker node efficiency 0.983
The controller efficiency was 0.093
cc 1054 nodes sent to processors
5* 1054 total nodes expanded

C.3.1.2 4 Nodes.

PARALLEL RISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-lA

Watting for results ...
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Received Initial Path with a computed cost of 8429.419922

** Queue length = 417 with q[q-front].cost = 7012.874023 *e

** Queue length = 800 with q[q.front].cost = 7065.594727e*

** Queue length = 1164 with q[q.front].cost = 7098.755859 **

** Queue length = 1489 with q[q.front].cost = 7123.954102 **

** Queue length = 1821 with q[qdfront].cost = 7143.987305 **

Ce Queue length - 2135 with q[q-front].cost = 7162.094238 **

** Queue length - 2393 with q(q.front].cost = 7181.497070 **

A Solution Path Has Been Found

Node 1 expanded 410 states
Bode 2 expanded 402 states
lode 3 expanded 403 states

The Best Route for mission AFIT-1 is:
x y z
17 17 8
16 16 8
15 15 8

14 15 8

13 15 8
12 15 8

11 15 8
10 14 8
9 13 8
8 12 8
7 11 8
7 10 8
6 9 7
6 8 7
5 7 6
5 6 6
4 5 5
4 4 5
3 3 5

2 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 25924.072266 ( 4.91 miles)

Vith a radar cost of 2497.056152

And a computed cost of 7182.459961

*** Timing Information ***

Initialize - 0.444 (sec) Find Initial Route = 6.953 (sec)
Searching - 1155.689 (sec) Total Execution = 1163.086 (sec)

Average worker node efficiency 0.965

The controller efficiency was 0.307
CC 1215 nodes sent to processors
C* 1215 total nodes expanded

C.3.1.3 8 Nodes.
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PARALLEL MISSION ROUTING PROBLEM

A* USIUG CEITRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

ee Queue length 2 409 with q[q-front].cost = 7020.617188 a.
ee Queue length = 801 with q[q_front].cost = 7069.722168**

** Queue length = 1177 with q~q.front].cost = 7100.1220704*
*4 Queue length = 1517 with q[q.front].cost = 7125.947754 **

*. Queue length = 1850 with q[q-front].cost = 7146.989258*4

*4 Queue length m 2145 with q[q-front].cost = 7166.814453*4
** Queue length a 2462 with q[qjfront].cost = 7182.459961**

A Solution Path Has Been Found

lode 1 expanded 152 states
lode 2 expanded 160 states

lode 4 expanded 164 states
lode 3 expanded 155 states
lode S expanded 156 states
lode 6 expanded 154 states

lode 7 expanded 156 states

The Best Route for mission AFIT-1 is:
I y z
17 17 8
16 16 8

15 15 8
14 15 8

13 15 8
12 15 8

11 15 8
10 14 8
9 13 8
8 12 8
8 11 8

7 10 8
6 9 7
6 8 7

5 7 6
5 6 6
4 5 5
3 4 5
2 3 5
1 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 25924.072266 ( 4.91 miles)

With a radar cost of 2497.066152

And a computed cost of 7182.459961

*** Timing Information ***
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Initialize a 0.947 (sec) Find Initial Route = 8.843 (sec)
Searching a 476.384 (sec) Total Execution W 486.174 (sec)

Average worker node efficiency 0.875
The controller efficiency gas 0.639
*0 1097 nodes sent to processors
cc 1097 total nodes expanded

C.3.2 Bounded (Depth = 4).

C.3.2.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

Ac USING CENTRALIZED LIST

Enter name of file containing the terrain data; terrainA
Enter name of file containing the radar data radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

*c Queue length = 421 with q[q.front].cost = 7234.859376cc
cc Queue length = 808 with q[q-front].cost = 7289.190918cc

cc Queue length a 1154 with q[q.front].cost = 7326.650391 cc
cc Queue length - 1478 with q[q-front].cost = 7352.232422 cc

A Solution Path Has Been Found

Node I expanded 676 states

The Best Route for mission AFIT-1 is:
x y z
17 17 8

16 16 7
15 15 7
14 15 7
13 15 7
12 15 7
1i 15 7
10 14 6

9 13 6
8 12 6
8 11 6
7 10 6

7 9 6

6 8 6
6 7 6
5 6 6
5 6 5

4 4 5
3 3 5
2 2 6
1 1 5
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For a total of 21 entries in the route

At a distance of 25924.072266 ( 4.91 miles)

With a radar cost of 2719.542236

And a computed cost of 7360.449219

*** Timing Information ***

Initialize = 0.348 (see) Find Initial Route = 32.277 (sec)

Searching = 12544.106 (eec) Total Execution = 12576.731 (see)

Average worker node ýfficiency 0.996
The controller efficiency was 0.011
** 676 nodes sent to processors
*e 676 total nodes expanded

C.3.2.2 4 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA

Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): &FIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

cc Queue length = 407 with q[q-front].cost = 7186.049805 **

cc Queue length = 790 with q[qfront].cost = 7226.736328cc
cc Queue length = 1137 with q[q-front].cost = 7258.778320 cc

cc Queue length = 1463 with q[q-front].cost = 7290.067871 *c
cc Queue length = 1798 with q[q.front].cost = 7307.657715cc

A Solution Path Has Been Found

Node 1 expanded 263 states
Node 2 expanded 287 states
Node 3 expanded 261 states

The Best Route for mission AFIT-1 is:
x y z
17 17 8

17 16 8
16 15 8

15 15 8
14 15 8

13 15 8
12 15 8
11 15 8
10 14 8

9 13 8
8 12 8

7 11 7
7 10 7
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7 9 7
6 8 6
6 7 6
5 6 5
5 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 22 entries in the route

At a distance of 26509.859375 ( 5.02 miles)

With a radar cost of 2507.106689

And a computed cost of 7307.657715

*** Timing Information ***

Initialize = 0.579 (sec) Find Initial Route = 32.381 (sec)
Searching = 5015.077 (sec) Total Execution . 5048.037 (sec)

Average worker node efficiency 0.992
The controller efficiency was 0.036
cc 781 nodes sent to processors
cc 781 total nodes expanded

C.3.2.3 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST
cccccccccccccccccccc*ccccccccccccce

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-1A

Waiting for results ...

Received Initial Path with a computed cost of 8429.419922

cc Queue length = 407 with q[q-front].cost = 7039.892578cc
cc Queue length = 790 with q[q_front].cost = 7098.755859cc
cc Queue length - 1144 with q[q-frontl.cost = 7125.947754 cc
cc Queue length - 1478 with qfq-front].cost = 7153.207031cc
cc Queue length = 1786 with q[q.front].cost = 7181.497070cc
cc Queue length 1 2157 with q[q-front].cost = 7182.459961 cc

A Solution Path Bas Been Found

Node I expanded 118 states
Node 2 expanded 122 states
Node 4 expanded 129 states
Node 3 expanded 126 states
Node 5 expanded 117 states
Node 6 expanded 125 states
Node 7 expanded 129 states
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The Best Route for mission AFIT-1 is:

x y z
17 17 8
16 16 8
15 15 8
14 15 8
13 15 8
12 15 8
11 15 8
10 14 8
9 13 8
8 12 8
7 11 8

6 10 7
6 9 7
6 8 7
5 7 6
4 6 5
3 5 5
2 4 5
1 3 5
1 2 5
1 1 5

For a total of 21 entries in the route

At a distance of 25924.072266 ( 4.91 miles)

With a radar cost of 2497.056152

And a computed cost of 7182.459961

*** Timing Information ***

Initialize = 0.954 (sec) Find Initial Route = 33.699 (sec)
Searching = 2323.707 (sec) Total Execution = 2358.360 (sec)

Average worker node efficiency 0.983
The controller efficiency was 0.088
** 866 nodes sent to processors
ee 866 total nodes expanded

C.4 iPSC/860 (Mission AFIT-GOA).

C.4.1 Bounded With Angle = 60.0 (Depth = 3).

C.4.1.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST
**e*e*****e*e***e****e****e****e*eee*

Enter name of file containing the terrain data: terrainA

Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA
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Waiting for results..

Received Initial Path with a computed cost of 15976.821289

ccQueue length - 345 with q~q-front].cost = 7321.625977 *

**Queue length = 614 with q(q-front] cost = 7572.889648 *

**Queue length = 882 with q~q..front].cost = 7772.815430*

**Queue length = 1144 with q[q-frontl.cost = 7940.270508 *

ccQueue length - 1384 with q[q-front).cost = 8077.243164 *

**Queue length = 1666 with q[q..frontJ.cost = 8178.366211 c

ccQueue length -1921 with qtq-front) cost = 8275.594727 *

**Queue length = 2192 with q~q..front].cost = 8354.332031 *
ccQueue length - 2459 with q[q-front] cost = 8429.144531 *

ccQueue length = 2700 with q~q-frontJ .cost = 8508.234375 *

**Queue length = 2981 with q[q-.front].cost = 8565.270508 *

**Queue length = 3230 with q~q..front].cost = 8627.852539c
**Queue length = 3496 with q[q..front].cost = 8683.722656*

**Queue length = 3708 with qtq..front) .cost = 8743.944336 *

ccQueue length = 3936 with q[q-front) .cost = 8796.912109 c

ccQueue length = 4175 with q[q-.front].cost = 8842.523438 c

ccQueue length = 4392 with q[q..front) .cost = 8890.786133 c

ccQueue length = 4588 with q~q-front) .cost = 8934.691406 *

ccQueue length = 4795 with q[q..frontJ .cost = 8977.369141 c

**Queue length = 5016 with q[q-front).cost = 9017.466797c

ccQueue length - 5209 with q~q..front) .cost = 9059.417969 c
ccQueue length = 5446 with q[q..front].cost = 9094.762695c

ccQueue length = 5651 with q~q..frontJ.cost - 9132.886719c

ccQueue length - 5821 with q[q-front] .cost - 9176.864258 c
ccQueue length - 6024 with q[q-front].cost - 9209.489258c

ccQueue length =6207 with q[q..frontJ.cost = 9245.529297c

ccQueue length = 6370 with q[q-frontJ.cost = 9279.855469c

ccQueue length = 6582 with q[q-front) .cost = 9307.747070 c

ccQueue length = 6789 with q[q..front) .cost = 9336.828125 c

ccQueue length = 7028 with q~q-front] .cost = 9360.974609 c
ccQueue length = 7256 with q~q-frontJ.cost = 9385.375000c

ccQueue length = 7512 with qfq-frontJ.cost = 9405.291016c

ccQueue length - 7787 with q[q-front) .cost = 9420.639648 c

ccQueue length = 8019 with q[q..front) .cost = 9439.339844 c

ccQueue length = 8298 with q[q-front].cost = 9453.063477c

ccQueue length = 8567 with q[q..front].cost = 9468.422852c

ccQueue length =8803 with qtq~frontj .cost = 9482.679688 c

ccQueue length = 9100 with q[q-front] .cost = 9493.128906 c

ccQueue length = 9341 with q[q-froutj.cost = 9505.552734c

<<< Performing Besm Search Reduction »>>>
ccQueue length - 5817 with q~q-frontJ .cost = 9514.939453 c

ccQueue length - 6162 with q~q..front].cost = 9522.248047c
ccQueue length - 6497 with q[q..front] .cost = 9529.062500 c

ccQueue length = 6810 with q~q..frontJ.cost -9537.083984c

ccQueue length -7103 with q[q..front).cost = 9545.895508c

ccQueue length - 7425 with q~q..front].cost - 9551.791016c

ccQueue length - 7757 with q[q-frontj .cost - 9557.912109 c
ccQueue length z 8040 with q~q..front].cost =9565.529297c

ccQueue length -8347 with q~q..frontJ.cost = 9571.066406c

ccQueue length = 8629 with q~q-frontj.cost - 9578.438477c

ccQueue length - 8938 with q(q-frontJ cost = 9584.368164 c

ccQueue length -9219 with q~q-frontj.cost = 9589.790039c

ccQueue length =9473 with q~q~frout].cost = 959T.320313c

<<< Performing Beam Search Reduction >>>
ccQueue length - 6010 with q[q-front].cost a 9601.845703c
ccQueue length - 6348 with qtq~frontj .cost =9606.309570 c

ccQueue length -6692 with q~q-frontJ.cost - 9609.179688c

ccQueue length =7032 with q~q-front) .cout = 9614.427734 c

ccQueue length - 7313 with q~q..frontJ.cost = 9617.783203c

ccQueue length - 7637 with qlq..front] coat - 9623.195313 c

ccQueue length - 7954 with q~q-front].coat a 9627.179688 c
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cc Queue length = 8275 with q[q-front].cost = 9632.107422 *
** Queue length - 8530 with q[q-front].cost = 9636.320313 cc
c Queue length - 8820 with q[q-frontj.cost = 9640.810547cc
cc Queue length a 9116 with q[q-frontl.cost = 9646.219727cc
CS Queue length = 9405 with q[q-front].cost = 9650.085938 cc

<<<< Performing Beam Search Reduction >>>>
** Queue length = 5924 with q[q-front].cost = 9654.554688 cc
cc Queue length = 6220 with q[q-front].cost = 9658.597656 cc

cc Queue length = 6535 with q~q-front].cost = 9662.877930cc
cc Queue length = 6900 with q[q-front].cost = 9664.815430 cc

A Solution Path Has Been Found

lode I expanded 15751 states

The Best Route for mission AFIT-GO is:
x 7 z

24 16 8
24 17 8
24 18 8
23 19 8
22 19 8
21 19 8
20 19 8

19 19 8
18 19 8

17 19 8
16 19 8
15 19 8
14 19 8

13 19 8
12 19 8

11 18 8
10 17 8

10 16 8
9 15 8
9 14 8
8 13 8
8 12 8
7 11 8
6 10 7
6 9 7

6 8 7
5 7 6
5 6 6
4 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

c*c Timing Information *cc

Initialize - 0.349 (sec) Find Initial Route = 7.511 (sec)
Searching a 32636.116 (sec) Total Execution = 32643.976 (sec)

Average worker node efficiency 0.875
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The controller efficiency was 0.511
se17571 nodes sent to processors
CC15751 total nodes expanded

C.4.1.2 4 Nodes.

PARALLEL MISSION ROUTING PROBLEM

AC USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA

Fitter name of file containing the radar data :radarA

Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results..

Received Initial Path with a computed cost of 15976.821289

CCQueue length = 342 with q[q-.frontll.cost = 7295.641602Cso

CCQueue length -605 with q~q..front].cost = 7548.078125CC*
CCQueue length = 867 with q~q..frontl.cost - 7752.152344CCo
CCQueue length =1112 with q[q..front) .cost =7930.727051 CC

CCQueue length -1347 with q~q..front) cost =8079.891113 so
so, Queue length = 1633 with q[q-front].cost =8176.913086CCo

CCQueue length a 1884 with q~q..frontl cost =8274.0810655s

CCQueue length =2160 with q~q-.front].cost =8356.519531 C

CCQueue length =2442 with qtq-frontj .cost =8426.970703 C

CCQueue length = 2700 with q~q..front].cost =8495.869141 C

CCQueue length =2976 with q~q-frontJ .cost = 8560.510742 C
CCQueue length a 3245 with q[q-.front).cost - 8617.153320CCo

so Queue length a 3487 with q[q-.frontj cost =8677.940430 so
CCQueue length a 3735 with q~q..frontJ .cost a8729.084961 c

CCQueue length a 3988 with q[q..front).cost "8780.481445C

CCQueue length -"4205 with q[q-frontJ cost "8829.189453CCo
CCQueue length a 4398 with q[q-frontJ .cost =8879.531250 CC

CCQueue length a 4617 with q~q..front] cost =8922.499023C
CCQueue length = 4828 with q[q..front].cost =8963.523438C

CeQueue length a 5040 with q~q-front].cost =9000.816406C

CCQueue length a 5225 with q~q-.frontl.cost a9044.284180C
CCQueue length a 5446 with q(q..front].cost a9080.322266C
CCQueue length a 5630 with q~q-jront].cost =9119.196289 C

so Queue length = 5816 with q[q-jront) .cost a9160.290039 C

CeQueue length a 6014 with qfq..front).cost =9194.660156 e

CCQueue length a 6177 with q~q..frontj cost =9231.916016C

CC Queue length a 6336 with q~q-front] .cost =9264.474609 Ce

Ce Queue length a 6524 with qfq-front) .cost a9296.173828 C

so Queue length ft 6747 with q[q..front).cost a9321.712891 C

CCQueue length a 6947 with q[q..froutl.cost 9349.755859CCo

CeQueue length a 7185 with q[q..front].cost a9374.731445 *0

CCQueue length a 7421 with q~q~jrontJ.cost a9395.030273CCo

CCQueue length a 7655 with q~q-.front].cost 9415.109375C

so Queue length a 7903 with q[q-.front) cost a9432.028320 C

CC Queue length a 8142 with q~q..front].cost - 9449.147461 so
CC Queue length a 8414 with q[q-front] coat - 9463.964102 *C

CC Queue length a 8652 with q[q..front).cost -"9478.705078Cso
so, Queue length a 8929 with q(q-front].coat -9491.339844C
so Queue length a 9186 with q[q-frontJ.cost -9502.972656C
0e Queue length a 9433 with qtq-front].cost - 9514.648438 c

<<<< Performing Dean Search Reduction »>>>
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** Queue length = 5973 with q[q-front].cost = 9522.298828 **
c* Queue length = 6295 with q[q-front].cost = 9530.360586 *c
** Queue length = 6634 with q[q-front].cost = 9537.341797c*
cc Queue length = 6950 with q[q-front].cost = 9546.695313 cc
cc Queue length = 7268 with q[q.front].cost = 9552.005859cc
cc Queue length = 7592 with q[q.front].cost = 9557.977539 cc
cc Queue length = 7879 with q[q-front].cost = 9566.185547cc
cc Queue length = 8184 with q[qfront].cost = 9573.007813 cc
cc Queue length = 8464 with q[q-front].cost = 9580.919922 cc
cc Queue length = 8779 with q[q-front].cost = 9586.035156 **
cc Queue length = 9063 with q[q-front].cost = 9592.123047cc
cc Queue length = 9353 with q[qfront].cost = 9599.110352 cc

<<<< Performing Beam Search Reduction >>>>
cc Queue length = 5866 with q[q-frontJ.cost = 9604.585938cc
cc Queue length = 6198 with q[q-front].cost = 9608.302734cc
cc Queue length = 6553 with q[q.front].cost = 9612.832031cc
cc Queue length = 6868 with q[q-front].cost = 9616.813477cc
cc Queue length = 7191 with q[q-front].cost = 9621.819336cc
cc Queue length = 7497 with q[q-front].cost = 9626.884766 cc
cc Queue length = 7816 with q[q.front].cost = 9632.060547c*
cc Queue length = 8085 with q[q-front].cost = 9636.320313 cc
cc Queue length = 8365 with q[q-front].cost = 9641.240234cc
cc Queue length = 8674 with q[q-front].cost = 9646.460938cc
cc Queue length = 8943 with q[q.front].cost = 9651.353516cc
cc Queue length = 9220 with q[q-front].cost = 9656.503906cc
cc Queue length = 9479 with q[q_front].cost = 9662.414063 cc

<<<< Performing Beam Search Reduction >>>>
cc Queue length - 6034 with q[q-front].cost - 9664.815430cc

A Solution Path Has Been Found

Bode 2 expanded 5183 states
Node 1 expanded 5220 states

lode 3 expanded 5223 states

The Best Route for mission AFIT-GO is:

x y z

24 16 8
24 17 8
24 18 8
23 19 8
22 19 8
21 19 8
20 19 8
19 19 8
18 19 8

17 19 8
16 19 8
15 19 8

14 19 8
13 19 8
12 19 8

11 18 8
11 17 8
10 16 8

9 15 8
9 14 8
8 13 8

8 12 8
7 11 8
6 10 7
6 9 7
5 8 7
4 7 6
3 6 6
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2 5 5
2 4 5
1 3 5

1 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.070313 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ***

Initialize = 0.557 (sec) Find Initial Route = 7.498 (sec)
Searching = 17960.518 (sec) Total Execution = 17968.573 (sec)

Average worker node efficiency 0.519
The controller efficiency was 0.912
cc 15626 nodes sent to processors

sc 15626 total nodes expanded

C.4.1.3 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

Ac USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.821289

sc Queue length = 335 with q[q.front].cost = 7324.488281 cc
co Queue length = 604 with q[q-front].cost = 7575.170898 cc

*c Queue length - 859 with q[q-front].cost = 7780.726563 **
cc Queue length = 1122 with q[q.front].cost = 7945.687988 *c
cc Queue length = 1364 with q[q-front].cost = 8079.891113 cc
cs Queue length = 1621 with q[q.front].cost = 8185.544922 sc

cc Queue length - 1874 with q[q.front].cost = 8284.203125 sc
cs Queue length = 2147 with q[q-front].cost = 8366.806641 cc
cs Queue length = 2429 with q[q-front].cost - 8435.746094 cc
so Queue length - 2674 with q[q-frontl.cost - 8514.046875 so
** Queue length - 2939 with q[q-front].cost - 8574.901367 so
cc Queue length = 3200 with q[q-front].cost - 8634.073242 so
cc Queue length = 3474 with q[q-front].cost - 8685.714844 so

cc Queue length = 3716 with q[q.front].cost - 8736.662109 so
cc Queue length = 3958 with q[q-front].cost - 8793.707031 cs
cc Queue length - 4186 with q[q-front].cost - 8842.523438 *c
so Queue length - 4393 with q[q.front].cost = 8889.791016 cc
cc Queue length = 4626 with q[q.front].cost = 8926.709961 cc

cs Queue length = 4815 with q[q-front].cost = 8970.699219 cc
cs Queue length - 5024 with q[q-front].cost = 9010.871094 cc

cc Queue length = 5207 with q[q-front].cost = 9052.476563 sc
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**Queue length - 5425 with q~q..front] .cost = 9090.109375 c

**Queue length = 5618 with q[q..frontj cost = 9129.294922 *

**Queue length - 5796 with q[q-front).cost =9171.066406 *

**Queue length -5983 with q~q..fronktJ.cost = 9204.410156 *

**Queue length = 6168 with q Cq.frontj cost = 9243.416016 *

**Queue length - 6319 with q~q-front].cost = 9278.300781 *

**Queue length = 6532 with q~q-frontJ.cost = 9306.005859*
**Queue length = 6737 with q[q-.frontj.cost = 9336.372070 *

**Queue length = 6962 with q~q..frontt].cost = 9363.667969c
**Queue length = 7203 with q[q..front].cost = 9385.583984 *

**Queue length =7458 with q[q-frontJ cost = 9403.602539 *

ccQueue length - 7712 with q[q..front].cost = 9422.628906c

**Queue length = 7950 with q[q-frout] cost = 9439.339844 c
CcQueue length = 8204 with qfq-front).cost = 9454.852539 *

**Queue length = 8466 with q [q-fron~tJ cost = 9468.913086*
**Queue length = 8702 with q[q..front] .cost = 9483.596680 *

ccQueue length = 8992 with q[q..frontj.cost = 9493.122070 *

**Queue length = 9261 with q[q..frontJ.cost = 9503.337891 *

<<< Performing Beam Search Reduction >>>
ccQueue length = 5765 with q~q..front] .cost - 9513.602539 *

ccQueue length = 6118 with q~q-frontj.cost - 9520.907227*
**Queue length - 6429 with q [q.fron~tJ cost = 9529.002930*
ccQueue length - 6753 with q[q~front].cost = 9535.935547c
**Queue length - 7071 with q[q~frontj.cost = 9544.583984c
**Queue length = 7354 with q[q..fronit].cost = 9551.201172*
**Queue length = 7679 with q[q..frontl.cost = 9556.960938*
ccQueue length - 7962 with q[q..frontJ.cost = 9563.821289 *

**Queue length -8273 with q[q..front] .cost = 9568.460938 c
ccQueue length -8556 with q[q-front) .cost = 9576.163086 *

**Queue length = 8846 with q[q-front].cost = 9581.949219*
**Queue length = 9129 with q[q-frontJ.cost = 9587.375000c
ccQueue length = 9433 with q[q-frontJ.cost = 9594.171875*

<<< Performing Beam Search Reduction »>>>
CcQueue length = 5915 with q~q-frontj.cost = 9600.625977c
ccQueue length = 6268 with q[q..frontl.cost = 9605.172852c
ccQueue length = 6593 with q[q..front].coat = 9608.302734 c
CcQueue length = 6946 with q~q..front].cost = 9612.832031*
ccQueue length - 7260 with q[q..frontJ.cost - 9616.287109c
ccQueue length - 7564 with q[q..front].cost = 9621.755859c
ccQueue length - 7861 with q[q..front) .cost = 9625.895508 c
ccQueue length - 8186 with q~q..front].cost = 9630.810547c
ccQueue length = 8462 with q~q..front].cost = 9635.562500c
ccQueue length = 8724 with q~q-frontJ .cost = 9639.828125 c
ccQueue length = 9000 with q[q..frontl cost = 9646.185547c
*.Queue length - 9290 with q~q-front].cost = 9649.708984 c
<<< Performing Beam Search Reduction >>>>

ccQueue length - 5751 with q[q..front) cost = 9655.906250 c
ccQueue length = 6069 with qfq..front].cost - 9659.177734c
ccQueue length = 6394 with q[q-.frontj.cost = 9664.203125c

A Solution Path Has Been Found

Bode 1 expanded 2263 states
lode 2 expanded 2264 states

Node 5 expanded 2262 states
Node 3 expanded 2279 states
Bode 4 expanded 2272 states
Node 6 expanded 2266 states
Node 7 expanded 2287 states

The Best Route for mission IFIT-G0 is:
x y z

24 16 8
24 17 8
24 18 8
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23 19 8

22 19 8
21 19 8

20 19 8
19 19 8
18 19 8

17 19 8
16 19 8
15 19 8
14 19 8
13 19 8
12 19 8
11 18 8
11 17 8
11 16 8
10 15 8
9 14 8
8 13 8
8 12 8

7 11 8
7 10 8
6 9 7
5 8 7
5 7 7
4 6 6
3 5 5
3 4 5
2 3 5
1 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.070313 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ***

Initialize a 1.199 (sec) Find Initial Route = 9.236 (sec)
Searching = 16998.520 (sec) Total Execution = 17008.955 (sec)

Average worker node efficiency 0.242
The controller efficiency was 0.984
** 15893 nodes sent to processors
** 15893 total nodes expanded

C.4.2 Bounded With Angle = 60.0 (Depth = 4).

C.4.2.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
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Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.821289

$$ Queue length = 323 with q[q-front].cost = 7376.946289cc
cc Queue length = 571 with q[qfront].cost = 7698.872070 *$
cc Queue length = 843 with q[q-front].cost = 7938.537109cc

$$ Queue length = 1102 with q[q-front].cost = 8135.414063 ,,
cc Queue length = 1386 with q[q-front].cost = 8283.530273cc
cc Queue length = 1655 with q~qjfront].cost = 8403.310547 **
cc Queue length = 1894 with q[q.front].cost = 8520.799805 cc

** Queue length = 2132 with q[q-front].cost = 8619.304688 **
cc Queue length = 2427 with q[q-front].cost = 8687.996094 cc
cc Queue length = 2706 with q[q.front].cost = 8745.828125 *c
$* Queue length = 2983 with q[q.front].cost = 8806.241211 cc
** Queue length = 3236 with q[q.front] .cost = 8868.263672 cc
cc Queue length = 3480 with q[q-front].cost = 8927,907227 cc
CC Queue length = 3706 with q[q.front].cost = 8987,048828 cc
CC Queue length - 3946 with q[qjfrontJ.cost = 9035.540039 cc
cc Queue length = 4181 with q[q.front].cost = Q082. 3 9 6508 cc
cc Queue length - 4404 with q[q.front].cost = 9133.377930 cc
cc Queue length - 4644 with q[q.front].cost = 9172.050781 cc
cc Queue length - 4840 with q[q.jrontl.cost = 9221.103516cc
cc Queue length = 5074 with q[q.front].cost = 9255.421875cc
** Queue length = 5262 with q[q-front].cost = 9294.814453 cc
cc Queue length = 5471 with q[q.front].cost = 9329.046875cc
cc Queue length = 5670 with q[q-front].cost = 9362.250000cc
cc Queue length = 5929 with q[q.front].cost = 9386.564453cc
cc Queue length = 6174 with q[q.front].cost = 9411.462891cc
cc Queue length - 6448 with q[q-front].cost = 9432.028320cc
cc Queue length = 6697 with q[qjfront].cost = 9453.063477cc
cc Queue length - 6973 with q[q-front].cost = 9469.876953cc
cc Queue length = 7224 with q[q.front].cost = 9488.949219cc
cc Queue length = 7515 with q[qjfront].cost = 9501.388672cc
cc Queue length = 7779 with q[q.front] .cost - 9514.825195 cc
cc Queue length = 8046 with q[q-front].cost = 9527.974609cc
cc Queue length - 8318 with q[q-front].cost = 9539.441406cc
cc Queue length - 8553 with q[q-frontj.cost = 9551.052734 cc
cc Queue length = 8866 with q[q.front].cost = 9557.927734cc
cc Queue length = 9116 with q[q-front].cost = 9568.031250 cc
cc Queue length = 9357 with q[q.front].cost = 9579.812500cc

<<<< Performing Beam Search Reduction >>>>
cc Queue length = 5886 with q[q.front].cost = 9584.863281 cc

cc Queue length - 6194 with q[qjfront] .cost = 9591.085938cc
cc Queue length - 6483 with q[q.front].cost = 9600.386719 cc
cc Queue length = 6790 with q[q.front].cost = 9606.309570 cc
cc Queue length - 7122 with q[q-front].cost = 9611.364258cc
cc Queue length = 7384 with q[q-front].cost = 9617.248047cc
cc Queue length - 7691 with q[qjfront].cost = 9625.031250 cc

Qc Queue length - 7990 with q[q.frontl.cost = 9630.723633cc
cc Queue length - 8230 with q[q.front] .cost = 9638.064453 Cc
cc Queue length - 8522 with q[q.front].cost - 9643.056641 cc
cc Queue length - 8786 with q[q.front].cost - 9648.606445 cc
cc Queue length = 9050 with q[q.front].cost - 9655.595703cc
cc Queue length - 9288 with q[q.front].cost = 9662.012695cc

<<<< Performing Beam Search Reduction >>>>
cc Queue length - 5829 with q[q-front].cost = 9664.815430 Cc

A Solution Path Has Been Found

gode 1 expanded 12165 states
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The Best Route for mission AFIT-GO is:
x y z
24 16 8
24 17 8
24 18 8
23 19 8

22 19 8
21 19 8

20 19 8
19 19 8
18 19 8

17 19 8
16 19 8
15 19 8
14 19 8
13 19 8
12 19 8
11 18 8

11 17 8
10 16 8
10 15 8
9 14 8
9 13 8

8 12 8
7 11 7
7 10 7
7 9 7

6 8 6
6 7 6

5 6 5
5 5 5

4 4 5
3 3 5
2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*e* Timing Information ***

Initialize = 0.183 (sec) Find Initial Route = 34.807 (sec)
Searching = 147856.127 (sec) Total Execution = 147891.117 (sec)

Average worker node efficiency 0.988
The controller efficiency was 0.076
** 12165 nodes sent to processors
CC 12165 total nodes expanded

C.4.2.2 4 Nodes.

PARALLEL NISSION ROUTING PROBLEN

A* USING CENTRALIZED LIST
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Enter name of file containing the terrain data: terraini
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.821289

C. Queue length - 326 with q[q-front].cost = 7503.325195 *
CC Queue length = 607 with q[qfront].cost = 7832.151855 66

** Queue length = 883 with q[q-froat].tcost = 8067.336914*5
** Queue length = 1166 with q[q-front].cost = 8244.138672 C*

CC Queue length = 1461 with q[q.front].cost = 8371.456055CC
CC Queue length = 1704 with q[q.front].cost = 8496.833008 5*

CC Queue length = 1949 with q[q-front].cost = 8607.810547 C*

CC Queue length = 2242 with q[qdfrontJ.cost = 8685.939453CC
CC Queue length = 2518 with q[q-front].cost = 8747.978516 Cs

*C Queue length = 2792 with q[q.front].cost = 8817.796875 C*

CC Queue length = 3058 with q[qdfront).cost = 8880.573242CC
CC Queue length = 3293 with q[q-front] .cost = 8941.316406CC
CC Queue length = 3546 with q[q-front].cost = 8995.882813CC
CC Queue length = 3768 with q[q-front].cost = 9051.890625Cc
C* Queue length = 4007 with q[qdfront].cost = 9105.364258 C*

C* Queue length = 4251 with q[qfront] .cost = 9148.771484 C*

CC Queue length = 4490 with q[q-front].cost = 9189.1171885*
CC Queue length = 4721 with q[q_front].cost = 9234.304688 **

CC Queue length = 4964 with q[q-front].cost = 9269.062500**
CC Queue length = 5169 with q[q-front].cost = 9308.505859 CC

C* Queue length = 5351 with q[q-front].cost = 9344.503906 C*

CC Queue length = 5595 with q[qsfront].cost = 9373.716797 Cs

CC Queue length = 5864 with q[q-front].cost = 9397.166016 Cs

CC Queue length = 6131 with q[q.front].cost = 9419.016602 *
CC Queue length = 6392 with q[q-front].cost = 9440.634766C*

CC Queue length = 6657 with q[q-front].cost = 9463.057617CC
*C Queue length = 6953 with q[qfront].cost = 9477.013672 se

** Queue length = 7229 with q[q.front].cost = 9492.023438 C,

CC Queue length = 7484 with q[q-front].cost = 9508.224609CC
CC Queue length = 7773 with q[q.front].cost = 9520.907227CC
*C Queue length = 8045 with q(q_frontj.cost = 9531.462891CC
CC Queue length = 8261 with q[q-front].cost = 9547.046875 Cs

CC Queue length = 8553 with q[q-front].cost = 9555.260742CC
CC Queue length = 8808 with q[q-front].cost = 9566.185547CC
CC Queue length = 9073 with q[q-front].cost = 9576.163086CC
CC Queue length = 9342 with q[q.front].cost = 9583.721680 **

<<<< Performing Beam Search Reduction >>>>
CC Queue length = 5850 with q[qdfront].cost = 9589.790039CC
CC Queue length - 6161 with q[q.front].cost = 9597.539063 Cs

CC Queue length = 6450 with q~q.front].cost = 9606.105469 CC

CC Queue length = 6785 with q[q-front].cost = 9610.175781 Cc

CC Queue length = 7070 with qtqfront).cost = 9616.287109 Cc

CC Queue length - 7362 with q[q-front].cost = 9624.122070CC
CC Queue length - 7671 with q~q-front].cost = 9629.186523 CC

CC Queue length = 7931 with q[q-front].cost = 9635.562500CC
CC Queue length = 8193 with q[qdfront].cost = 9641.604492CC
CC Queue length - 8491 with q[q-front].cost = 9648.041992 CC

CC Queue length = 8765 with q~q-front].cost = 9653.536133 CC

CC Queue length = 9007 with q[qdfront].cost = 9660.012695 e

CC Queue length - 9305 with q[q-front].cost = 9664.815430 e

<<<< Performing Beam Search Reduction >>>>

A Solution Path Has Been Found

Node 2 expanded 3887 states
Node I expanded 3865 states
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lode 3 expanded 3799 states

The Best Route for mission AFIT-GO is:

x y z
24 16 8
24 17 8
24 18 8
23 19 8

22 19 8
21 19 8
20 19 8
19 19 8
18 19 8
17 19 8
16 19 8
15 19 8
14 19 8
13 19 8
12 19 8
11 18 8
11 17 8
10 16 8

10 15 8
9 14 8
9 13 8
8 12 8
7 11 7
6 10 7
6 9 7
5 8 6

5 7 6
4 6 5
4 5 5
4 4 5
3 3 5
2 2 5
1 1 S

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ***

Initialize = 0.358 (sec) Find Initial Route = 34.913 (sec)
Searching - 47864.490 (sec) Total Execution = 47899.761 (see)

Average worker node efficiency 0.982
The controller efficiency was 0.221
cc 11541 nodes sent to processors
cc 11541 total nodes expanded

C.4.2.3 8 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST
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Enter name of file containing the terrain data: terraink
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.821289

** Queue length = 304 with q[q-front)].cost = 7493.672852 44

*4 Queue length - 565 with q[q.front].cost = 7817.017090*e
cc Queue length = 833 with q[qfront].cost = 8058.233398*4
** Queue length = 1112 with q[q.front].cost = 8225.800781 4*

cc Queue length = 1404 with q[q-front].cost = 8359.893555 cc
cc Queue length - 1677 with q[q.front].cost = 8488.294922*.
** Queue length = 1931 with q[q-front].cost = 8587.010742 *4

cc Queue length - 2213 with q[q-front].cost = 8666.1181644*
cc Queue length = 2501 with q[q-front].cost = 8730.224609*4
** Queue length = 2767 with q[q.front].cost = 8796.770508 **

*4 Queue length = 3041 with q[q.front].cost = 8859.888672 *
cc Queue length = 3280 with q[q.frontj.cost = 8924.345703*4
cc Queue length = 3501 with q[qdfront].cost = 8983.913086 *4

4* Queue length = 3738 with q[q.front].cost = 9035.605469 *4

** Queue length = 3959 with q[q.front).cost = 9086.886719*.
cc Queue length = 4205 with q[q-front].cost = 9138.5214844*
* Queue length = 4449 with q[qfront] .cost = 9179.313477 **

44 Queue length = 4677 with q[qfront].cost = 9222,627930*4

*4 Queue length = 4908 with q[q.front].cost = 9259.384766*4
cc Queue length = 5123 with q[q.front].cost = 9298.426758 *

4* Queue length = 5342 with q[q.front].cost = 9332.226563 *

cc Queue length = 5562 with q[q-front].cost = 9363.702148*4
cc Queue length = 5813 with q[q.front].cost = 9390.601563*4
44 Queue length = 6074 with q[q.front].cost = 9413.194336 *
cc Queue length - 6331 with q[q.front).cost = 9433.788086*
cc Queue length = 6594 with q[qfront].cost = 9455.0771484*
cc Queue length = 6887 with q[q.front].cost = 9470.712891 r*
cc Queue length = 7150 with q[q.front].cost = 9489.152344 *

cc Queue length = 7429 with q~q-front].cost = 9503.215820*4
cc Queue length = 7685 with q[q-front].cost = 9519.367188*4
*4 Queue length = 7968 with q[q.front].cost = 9529,500977 *4

cc Queue length = 8228 with q[q-front].cost = 9541.57421944
cc Queue length = 8490 with q[q.front].cost = 9551.79101644
4* Queue length = 8758 with q[q-front].cost = 9561.313477ec

* Queue length = 9037 with q[q-front].cost = 9571.3535164*
44 Queue length = 9265 with q[q-frontj.cost = 9581.7148444*

<<<< Performing Beam Search Reduction >>>>
cc Queue length - 5827 with q[qdfront].cost -9587.03418044
cc Queue length - 6142 with q[q.front].cost - 9595.438477 cc
cc Queue length = 6424 with q[q-front].cost = 9603.039063 cc
*4 Queue length - 6742 with q(q.front].cost - 9608.302734 4*

44 Queue length = 7077 with q[q-frontj.cost - 9614.42773444
4* Queue length - 7349 with q[q.front].cost - 9620.373047*4
44 Queue length - 7639 with q[q.front].cost - 9627.178711 cc
cc Queue length - 7949 with q[q.front].cost - 9634.159180 4*

44 Queue length - 8177 with q~q.front].coat - 9639.45605544
* Queue length = 8463 with q[q-front].cost = 9646.185547 *4

cc Queue length - 8733 with q[q.front].cost - 9661.791992*4
cc Queue length a 8981 with q[q-front].cost = 9658.558594cc
4* Queue length = 9253 with q[q.front].cost - 9664.81543044

<<<< Performing Beam Search Reduction >>>>
*4 Queue length - 5828 with q[q.frontJ.cost = 9664.815430*4

A Solution Path Has Been Found
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lode 1 expended 1679 states
Node 2 expanded 1670 states
Node 4 expended 1670 states
Node 3 expanded 1668 states
lode 5 expanded 1623 states
lode 6 expanded 1639 states
Node 7 expanded 1689 states

The Best Route for mission AFIT-GO is:
x y Z
24 16 8

24 17 8
24 18 8
23 19 8

22 19 8

21 19 8

20 19 8
19 19 8
18 19 8
17 19 8
16 19 8
15 19 8
14 19 8
13 19 8
12 19 8
11 18 8
10 17 8
9 16 8
9 15 8
9 14 8

8 13 8
7 12 8

6 11 7
5 10 7

4 9 7
3 8 6

3 7 6

2 6 5

2 5 5

2 4 5
2 3 5

1 2 5

1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information ***

Initialize = 0.941 (sec) Find Initial Route - 37.321 (sec)
Searching = 21183.054 (sec) Total Execution = 21221 .316 (sec)

Average worker node efficiency 0.956
The controller efficiency was 0.503
00 11638 nodes sent to processors

11638 total nodes expanded
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C.4.3 Bounded With Angle = 59.0 (Depth = 3,).

C.4.3.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data :radari

Enter name of file containing the Air Tasking Order (ATm): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.821289

ccQueue length = 309 with q[q..front].cost = 7609.132813c

ccQueue length = 563 with q[q..frontJ.cost = 8092.900391 c

ccQueue length = 853 with q(q-frontl.cost = 8383.039063 c

ccQueue length = 1136 with q~q-front] .cost = 8600.023438 c
ccQueue length = 1386 with q[q-front].cost = 8806.270508c
ccQueue length = 1650 with q[q-front].cost = 8960.724609c
ccQueue length - 1918 with q~q..front) .cost = 9108.349609 c
ccQueue length = 2181 with q~q..front].cost - 9232.999023c

ccQueue length - 2472 with q~q..frontl.cost = 9323.435547c
ccQueue length -2788 with q~q-front) .cost = 9386.617188 c

ccQueue length = 3111 with q Cq.fronttj cost = 9422.214844c
ccQueue length - 3446 with q~q..frontj.cost = 9452.700195c
ccQueue length = 3758 with q[q..frontJ cost 9474.687500 c
ccQueue length = 4079 with q~q..frontJ.cost = 9494.670898c
ccQueue length = 4371 with q~q-front] .cost = 9512.826172 c
ccQueue length = 4675 with q[q..front) .cost = 9529.002930 c
ccQueue length = 4954 with q[q..front].cost = 9545.173828c
ccQueue length = 5248 with q[q..frontj.cost = 9556.621094c
ccQueue length = 5535 with q[q..frontJ cost = 9567.283203 c
ccQueue length = 5766 with q~q..frontJ.cost = 9581.111328c
ccQueue length = 6049 with q~qdfront).cost = 9589.790039c
ccQueue length = 6271 with q[q..frontj.cost = 9602.035156c
ccQueue length = 6548 with q[q-dront].cost = 9609.772461 c
ccQueue length = 6771 with q~q..front] .cost = 9618.826172 c
ccQueue length = 7037 with q[q..front] .cost = 9627.578125 c
ccQueue length a 7217 with q[q-.front].cost = 9636.536133c
ccQueue length = 7437 with q[q-frontJ cost - 9646.185547 c
ccQueue length = 7656 with q~q..front].cost - 9654.634766c
ccQueue length = 7808 with q[qdfront].cost = 9664.366211 c

A Solution Path Has Been Found

lode I expanded 6817 states

The Best Route for mission AFIT-GO is:

x 7 z
24 16 8
24 17 8
24 18 8
23 19 6

22 19 8

21 19 8

20 19 8

19 19 8
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18 19 8
17 19 8
16 19 8

15 19 8
14 19 8
13 19 8
12 19 8
11 18 8

10 17 8
10 16 8

9 15 8
9 14 8
8 13 8

8 12 8
7 11 8
6 10 7
6 9 7
6 8 7
5 7 6
5 6 6
4 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

"-** Timing Information ***

Initialize - 0.484 (sec) Find Initial Route = 6.013 (sec)
Searching = 8441.781 (sec) Total Execution = 8448.278 (sec)

Average worker node efficiency 0.893
The controller efficiency was 0.413
** 6817 nodes sent to processors
** 6817 total nodes expanded

C.4.3.2 4 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.821289

cc Queue length - 308 with q[q-front].cost - 7691.256836cc
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cc Queue length = 573 with q[q.jront].cost = 8158.927734 **

CC Queue length 857 with q[q.jrontl.cost = 8428.045898 *�
** Queue length = 1149 with q(q.�front] cost 8635.816406 CC

CC Queue length = 1422 with q[q.front).cost = 8812.970703cc
cc Queue length = 1671 with q[q..front].cost = 8984.738281 CC

CC Queue length 1937 with q[q.front) .cost = 9112.332031 CC

** Queue length = 2195 with qCq.front).cost = 9231.916016 **

cc Queue length = 2463 with q[q.frontJ cost = 9340.158203 Cc
cc Queue length 2752 with q[q..front] cost = 9432.745117cC
cc Queue length 3058 with qEq.front] .coet = 9488.003906 cc
cc Queue length = 3399 with q[q..front].cost = 9529.167969 **

cc Queue length = 3699 with q[q.frontJ .cost = 9563.847656 **

** Queue length = 4020 with q[q..front] cost = 9587.947266 **

** Queue length = 4332 with q[q.jront].cost = 9611.217773Cc
** Queue length = 4672 with q[q..frontJ.cost = 9624.118164 **

Cc Queue length = 4955 with qEq..front) .cost = 9643.644531 cc
** Queue length = 5264 with q[q.frontl cost = 9655.515625 **

** Queue length = 5539 with q[q..front].cost = 9672.458008 **

** Queue length = 5820 with q[q.irontj.cost = 9682.289063 **

CC Queue length = 6105 with q[q..frontj.cost = 9693.055664 **

CC Queue length = 6349 with qEq..front) .cost = 9705.886719 **

** Queue length = 6624 with qEq.front].cost = 9714.297852 **

CC Queue length = 6850 with q[q...front].cost = 9725.752930 **

cc Queue length = 7110 with qEq.frontj cost = 9733.441406 cc
CC Queue length = 7362 with q[qjront].cost = 9741.497070cc
cc Queue length = 7610 with q[q..frontl.cost = 9750.850586 **

CC Queue length = 7854 with q(q..frontl .cost = 9758.968750 �
Cc Queue length = 8060 with q[q.front].cost = 9765.359375CC
cc Queue length = 8261 with q[q.frontj .cost = 9774.593750 cc
CC Queue �.ength = 8449 with q[q.frontJ.cost = 9783.105469cc
cc Queue length = 8700 with qEq..front) .cost = 9789.323242 CC

A Solution Path Has Been Found

Node 1 expanded 2478 states
lode 2 expanded 2440 states

Node 3 expanded 2456 states

The Best Route for mission AFIT-GO is:
I y x
24 16 8
23 17 8
22 18 8
21 19 8
20 19 8
19 19 8
18 19 8
17 19 8
16 19 8
15 19 8

14 19 8
13 19 8
12 19 8

11 18 8

10 17 8
9 16 8
9 15 8

8 14 8
8 13 8
7 12 8
6 11 8

6 10 8
5 9 7
4 8 7
3 7 6
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3 6 6
2 5 5
2 4 5
1 3 5
1 2 5
1 1 5

For a total of 31 entries in the route

At a distance of 36752.500000 ( 6.96 miles)

Vith a radar cost of 3048.528076

And a computed cost of 9789.323242

*** Timing Information ***

Initialize = 0.582 (sec) Find Initial Route = 5.661 (sec)
Searching = 4765.459 (sec) Total Execution = 4771.702 (sec)

Average worker node efficiency 0.571
The controller efficiency was 0.865
*$ 7374 nodes sent to processors
,e 7374 total nodes expanded

C.4.4 Bounded With Angle = 59.0 (Depth = 4).

C.4.4.1 2 Nodes.

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST
cccccccccccccccccccccccccccccccccccc

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.821289

cc Queue length = 292 with q[q-front].cost = 7782.239258cc
cc Queue length - 564 with q[q-front].cost - 8350.895508cc
cc Queue length - 837 with q[q-front].cost - 8669.387695 cc
cc Queue length - 1131 with q[qfront].cost a 8885.211914 cc
c* Queue length = 1397 with q[q-front].cost = 9086.886719 cc
cc Queue length - 1671 with q[q-front].cost a 9248.910156 cc
cc Queue length = 1958 with q[q-front].cost - 9352.745117cc
cc Queue length = 2298 with q~q-front].cost a 9411.905273cc
cc Queue length - 2630 with q[q-front].cost a 9450.676758 cc
cc Queue length = 2944 with q[q-front].cost - 9480.691406 c*
cc Queue length - 3276 with q(q-front].cost a 9503.215820cc
cc Queue length = 3587 with q[q-front].cost = 9522.298828 *c
cc Queue length - 3873 with q[q-front].cost - 9544.767578cc
cc Queue length = 4193 with qtq-front].cost = 9556.672852cc
cc Queue length - 4488 with qtq-front].cost = 9569.969727 cc
cc Queue length - 4765 with q[q-front].cost - 9582.477539cc
cc Queue length - 5046 with q[q-front].cost = 9595.438477cc
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cc Queue length = 5271 with qtq-front].cost = 9608.302734 **
cc Queue length - 5547 with q[q.front].cost = 9616.287109cc
cc Queue length = 5804 with q[q.front].cost = 9627.950195cc
cc Queue length = 6031 with q[q.front].cost = 9638.064453 *c
cc Queue length = 6280 with q[q.front].cost = 9648.165039cc
cc Queue length = 6467 with q[q.front].cost = 9658.556641cc
cc Queue length = 6748 with q[q-front3.cost = 9664.815430 cc

I Solution Path Has Been Found

lode I expanded 5353 states

The Best Route for mission AFIT-GO is:
x y z
24 16 8
24 17 8
24 18 8
23 19 8
22 19 8
21 19 8
20 19 8
19 19 8
18 19 8
17 19 8
16 19 8
15 19 8
14 19 8
13 19 8
12 19 8

11 18 8
11 17 8
10 16 8

10 15 8

9 14 8
9 13 8
8 12 8

7 11 7
7 10 7
7 9 7
6 8 6

6 7 6
6 6 5
5 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 37924.074219 ( 7.18 miles)

With a radar cost of 2600.000000

And a computed cost of 9664.815430

*** Timing Information *c*

Initialize - 0.323 (sec) Find Initial Route = 18.438 (sec)
Searching = 32698.327 (sec) Total Execution = 32717.088 (sec)

Average worker node efficiency 0.986
The controller efficiency was 0.072
cc 5353 nodes sent to processors
CC 5353 total nodes expanded
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C.4.4.2 4 Nodes.

PARALLEL MISSION ROUTING PROBLEN

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarl
Enter name of file containing the Air Tasking Order (ATO): AFIT-GOA

Waiting for results ...

Received Initial Path with a computed cost of 15976.821289

Q4 queue length = 303 with q[q-front].cost = 7999.010742 *4

Qc queue length = 591 with q(q-front].cost = 8468.818359*.
4* Queue length = 865 with q[q-front].cost = 8754.843750**

** Queue length = 1148 with q[q-frontJ.cost = 8980.826172**
** Queue length = 1424 with q[q-front].cost = 9156.640625 **
*4 Queue length = 1699 with q[q-front].cost = 9312.875000 *

4* Queue length = 1998 with q[qdfront].cost = 9414.377930cc
*4 Queue length = 2328 with q[q-front].cost = 9474.386719 *4

44 Queue length = 2676 with q[qdfront].cost = 9511.164063*4

44 Queue length = 3012 with q[q.front].cost = 9541.574219*4
44 Queue length = 3317 with q[q.front].cost = 9567.021484*4

** Queue length = 3621 with q(q-front].cost = 9586.769531 **
4* Queue length = 3934 with q[qdfront].cost = 9599.423828 *

44 Queue length = 4236 with q[q.front].cost = 9614.6210944*
44 Queue length = 4526 with q[q.front].cost = 9627.723633*4
4* Queue length = 4769 with q[q-front].cost = 9642.4638674*

Q* Queue length = 5093 with q[q-front].cost = 9651.353516*4
*Q Queue length = 5298 with q[q-front].cost = 9664.279297 *4

*4 Queue length = 5532 with q[q.front].cost = 9676.298828 **
44 Queue length = 5794 with q[qdfront].cost = 9684.090820 **

A Solution Path Has Been Found

Node 2 expanded 1433 states
Node I expanded 1412 states

Node 3 expanded 1439 states

The Beat Route for mission AFIT-GO is:
x y z
24 16 8
24 17 8

24 18 7
23 19 6

22 19 6
21 19 6
20 19 6
19 19 6
18 19 6
17 19 6
16 19 6
15 19 6

14 19 6

13 19 6
12 19 6
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11 18 6
10 17 6
9 16 6

8 15 6

8 14 6
8 13 6

7 12 6
7 11 6

6 10 6
5 9 6
5 8 6
5 7 6
4 6 5
4 5 5
4 4 5
3 3 5
2 2 5
1 1 5

For a total of 33 entries in the route

At a distance of 38020.449219 ( 7.20 miles)

With a radar cost of 2600.000000

And a computed cost of 9684.090820

*** Timing Information ***

Initialize = 0.549 (eec) Find Initial Route = 18.479 (eec)
Searching = 8269.536 (see) Total Execution = 8288.564 (sec)

Average worker node efficiency 0.981
The controller efficiency was 0.193
as 4284 nodes sent to processors
CC 4284 total nodes expanded

C-57



Appendix D. Angles Between Directional Vectors

D.1 Problem Analysis

Once it was determined there was a difference in values between the calculated angles possible

sources of this error were identified as either hardware or software. Even though the i860 is adver-

tised as a 64-bit microprocessor its instruction set and integer registers are 32-bits wide, while the

floating point units are 64-bits (26:1-2). The i860 does support both 32- and 64-bit representation

of real number which are in accordance with ANSI/IEEE standard 754-1985 (26:1-4,2-2). The 386

has 32-bit instructions with a 32-bit data bus (28:5-355). The architecture does support 32-, 64-,

and 80-bit real numbers (28:5-305). The format used to represent the 32- and 64-bit data is not

given, nor is there any indication whether any of the representations conform to any ANSI/IEEE

standard. The assumption can not be made that because the microprocessors are made by the

same company that they use the same representations or conform to the same standards. Thus, it

is possible that the differences in hardware could be causing the accuracy problem.

Chapter III presented the equations used to derive the formula for calculating the angle

between two 3-dimensional vectors which is

alb, + a2b2 + a3b 30 = arccos IAIJBI (D.1)

If 0 is less than or equal to the field-of-view variable then the child location is considered reachable

from the parent location, thus the child is valid. Otherwise the child is not valid and is rejected.

Since the directional vectors are unit vectors, a and b can only take on the values -1, 0, and 1.

Because order does not matter aibi also can only take on the values - 1, 0, and 1. The representation

of the environment is a cube meaning all edges have the same length, this means that A and B can

only take on the values 1, v/'2, and V'l which means that A . B will have the values 1, vF2, vf3, V'6,

2, and 3. This reduces the number of combinations which needed to be examined. A spreadsheet is
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used to generate the results contained in Table D.1. Since all possible combinations are examined

there are some combinations which are not physically possible. For instance if aibi are all -1 then

the two vectors go from one corner to the oppos;,c. Both vectors have a magnitude of V,3. Thus for

aibi equal all ones A B can only be equal to 3, all other possible values of A B are not physically

possible. Figure D.1 is an example of some possible directional vectors.

<O00-1> and <l O00> <0 I1> and <1 11>, /

<-1 -1 -1> and <-1 -1 -1> <00-1>and<00 1>

Figure D.I. Examples of Directional Vectors

D.2 Execution Results

D. 2. 1 Insertions Into the Open List. The following sections contain a partial output listing.

The sequential version of the code is executed for ease of determining the operation of the algorithm.

The following abbreviations are used in the output:

P - Parent (Last entry in the Route)
L - Number of entries in the route
D - Directional vector used to each parent
C - Cost (f')
G - Cost (g)
R - Accumulated radar cost
D - Distance travelcd

BC - Best cost
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D. 2.1.1 iPSC/2 (Mission A FIT-OA).

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-OA
Found an initial route with a cost of 5690.290527

REMOVED - P(17 17 8) L( 1) D( 0 0 0) C( 0.0000) G( 0.0000) R( 0.0000) D() 0.0000) 80(5690.2905)
INSERTED- P(17 18 7) L( 2) D( 0 1 -1) C(4236.1880) G( 707.1068) R( 846.5282) D( 1414.2136) BC(5690.2905)
INSERTED- P(18 18 7) L( 2) D( 1 1 -1) C(4412.5815) G( 519.6152) R( 762.1024) D( 1732.0508) BC(5690.2905)
INSERTED- P(18 17 7) L( 2) D( 1 0 -1) 0(4340.4175) G( 424.2641) R( 622.2540) D( 1414.2136) B0(5690.2905)
INSERTED- P(18 16 7) L( 2) D( 1 -1 -1) C(3973.9595) G( 519.6152) R( 762.1024) D( 1732.0508) BC(5690.2905)
INSERTED- P(17 16 7) L( 2) D( 0 -1 -1) C(3798.2222) G( 707.1068) R( 848.5282) D( 1414.2136) BC(5690.2905)
INSERTED- P(16 16 7) L( 2) D(-1 -1 -1) C(4224.6904) G(1212.4355) R(1316-3586) D( 1732.0508) B0(56902905)
INSERTED- P(16 17 7) L( 2) D(-1 0 -1) C(4904.7998) G(l1l31.3710) R(1 187.9395) D( 1414.2136) 80(5690.2905)
INSERTED- P(16 18 7) L( 2) D(-1 1 -1) C(4925.3516) G(1212.4355) RI 1316.3566) D( 1732,0508) BC(5690.2905)
INSERTED- P(17 18 8) L( 2) D( 0 1 0) C(3955.1392) G( 500.0000) R( 600.0000) D( 1000.0000) 80(5690.2905)
INSERTED- P(18 18 8) L( 2) D( 1 1 0) C(4294.6421) G( 424.2641) R( 622.2540) D( 1414.2136) B0(5690.2905)
INSERTED- P(18 17 8) L( 2) D( 1 0 0) C(4181.4131) G( 300.0000) R( 440.0000) D( 1000.0000) BC(5690.2905)
INSERTED- P(18 16 8) L( 2) D( 1 -1 0) C(3877.6450) G( 424.2641) R( 622.254(1) D( 1414.2136) 80(5690.2905)
INSERTED- P(17 16 8) L( 2) D( 0 -1 0) C(3589.9670) G( 500.0000) R( 600.0000) D( 1000.0000) BC(5690.2905)
INSERTED- P(16 16 8) L( 2) D(-1 -1 0) C(4040.3633) G( 989.9495) R( 1074.8024) D( 1414.2136) 80(5690.2905)
INSERTED- P(16 17 8) L( 2) D(-i 0 0) C(4393.5005) G( 800.0000) R( 840.0000) D( 1000.0000) BC(5690-2905)
INSERTED- P(16 18 8) L( 2) D(-1 1 0) 0(4718.3232) G( 989.9495) R(1074,8024) D( 1414-2136) BC(5690-2905)
INSERTED- P(17 18 9) L( 2) D( 0 1 1) C(4358.2202) G( 707.1068) R( 848.5282) D( 1414.2136) BC(5690.2905)
INSERTED- P(18 18 9) L( 2) D( 1 1 1) C(4470.6230) G( 519.6152) R( 762.1024) D( 1732.0508) BC(5690.2905)
INSERTED- P(18 17 9) L( 2) D( 1 0 1) C(4401.9604) G( 424.2641) R( 622.254t0) D( 1414.2136) BC(5690.2905)
INSERTED- P(18 16 9) L( 2) D( 1 -1 1) C(4087.1873) G( 519.6152) R( 762.1024) DI) 1732.0508) BC(5690.2905)
INSERTED- P(17 16 9) L( 2) D( 0 -1 1) C(3903.3296) G( 707.1068) R( 846.5282) D( 1414.2136) BC(5690.2905)
INSERTED- P(16 16 9) L( 2) D(.1 -1 1) 0(4371.0771) G(1212.4355) R1(1316.3566) D( 1732.0508) BC(5690.2905)
INSERTED- P(16 17 9) L( 2) D(-1 0 1) C(5051.1860) G(1131.3710) R(1187.9395) D( 1414.2136) 80(5690.2905)
INSERTED- P(16 18 9) L( 2) D(-1 1 1) C(5015.9639) G(1212.4355) R(1316.:3586) D( 1732.0508) B0(5690.2905)

REMOVED - P(17 16 8) L( 2) D( 0 -1 0) C(3589.9670) G( 500.0000) R( 600.0000) D( 1000.0000) 80(56902905)
NOT VALID- P( 7 16 8) 0(1 7 17 7)
NOT VALID- P(17 16, 8) 0(18 17 7)
NOT VALID- P(17 16 8) 0(18 16 7)
INSERTED- P(18 15 7) L( 3) D( 1 -1 -1) C(4796.6821) G(1192.8203) R(1500-6664) D( 2732 0508) 80(5690.2905)
INSERTED- P(17 15 7) L( 3) D( 0 -1 -1) 0(4290.5396) G( 924.2641) R(1222.2540) D( 2414.2136) BC(5690.29051
INSERTED- P(16 15 7) L( 3) D(-1 -1 -1) C(4299.0342) G(1366.0254) R(1639.2305) D( 2732.0508) BC(5690.2905)
NOT VALID- P(17 16 8) C(16 16 7)
NOT VALID- P(17 16 8) C(16 17 7)
NOT VALID- P(17 16 8) C(17 17 8)
NOT VALID- P(17 16 8) 0(18 17 8)
NOT VALID- P(17 16 8) 0(18 16 8)
INSERTED- P(18 15 8) L( 3) D( 1 -1 0) 0(4677.4321) G(1065.6854) R(1335.3911) D( 2414.2136) BC(5690.2905)
INSERTED- P(17 15 8) L( 3) D( 0 -1 0) 0(4149.6938) G( 800.0000) R(1040 0000) D( 2000.0000) 80(5690.2905)
INSERTED- P(16 15 8) L( 3) DfI- -1 0) C(4165.5610) G(1207.1068) R(144&.5262) D() 2414.2136) 80(5690.2905)
NOT VALID- P(17 16 8) 0(16 16 8)
NOT VALID- P(17 16 8) C(16 17 8)
NOT VALID- P(17 16 8) C(17 17 9)
NOT VALID- P(17 16 8) 0(18 17 9)
NOT VALID- P(17 16 8) 0(18 16 9)
INSERTED- P(18 15 9) L( 3) D( 1 -1 1) C(4916.0576) 0(1 192.8203) R(1 500.6664) D( 2732.0508) 80(5690.2905)
INSERTED- P(17 15 9) L( 3) D( 0 -1 1) C(4398.4829) G( 924.2641) R(1222-.2540) D( 2414.2136) BC(5690.2905)
INSERTED- P(1 6 15 9) L( 3) D(-1 -1 1) C(4445.4209) G(1366.0254) R(1639.2305) D( 2732.0508) BC(5690.2905)
NOT VALID- P(1 7 16 8) 0(1 6 16 9)
NOT VALID- P(17 16 8) C(16 17 9)

REMOVED - P(1 7 16 7) L( 2) D( 0 -1 -1) C(3798.2222) G( 707.1068) R( 846.5282) DI) 1414.2136) BC(5690.2905)
NOT VALID- P(1 7 16 7) 0(1 7 17 6)
NOT VALID- P(17 16 7) 0(18 17 6)
NOT VALIDI-P(17 16 7) 0(18 16 6)
INSERTED- P(18 15 6) L( 3) D( 1 -1 -1) 0(5029.4966) G) 1399.9271) R(1 749.19461 D( 3146.2644) 80(56902905)
INSERTED- P(17 15 6) L( 3) D( 0-1 -1) C(4524.9961) G(1 131.3710) Rj147'1.7822) D( 2828.4272) BC(5690.2905)
INSERTED- P(16 15 6) L( 3) DC- -1I-1) C(4527.7588) G(1573.1322) R(1887.7567) D( 3146 2644) BC(5690 2905)
NOT VALID- P(17 16 7) C(16 16 6)
NOT VALID- P(17 16 7) C(16 17 6)
NOT VALID- P(17 16 7) 0(17 17 7)
NOT VALID- P(17 16 7) 0(18 17 7)
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NOT VALID- P(17 16 7) C(18 16 7)
NOT VALID- P(17 16 7) C(18 15 7)
INSERTED- P(17 15 7) L( 3) D( 0-1 0) 0(4356,8140) G(1007.1068)R(1288.5282)D( 2414.2136) BC(S690-2905)
NOT VALID- P(17 16 7) C(16 15 7)
NOT VALID- P(17 16 7) C(16 16 7)
NOT VALID- P(17 16 7) C(16 17 7)
NOT VALID-1-P(1716 7) C(17 17 8)
NOT VALID- P(17 16 7) C(16817 8)
NOT VALID- P(17 16 7) C(18 16 8)
NOT VALID- P(17 16 7) C(18 15 8)
NOT VA LID- P(1 7 16 7) C(17 15 8)
NOT VALID- P(17 16 7) C(16 15 8)
NOT VALID- P(17 16 7) C(16 16 8)
NOT VALID- P(17 16 7) C(16 17 8)

REMOVED - P(17 16 9) L( 2) D( 0 -1 1) C(3903.3296) G( 707.1068) R( 848.5282) D( 1414.2136) BC(5690.2905)
NOT VALID- P(17 16 9) C(17 17 8)
NOT VALID- P(1 7 16 9) 0(18 17 8)
NOT VALID- P(17 16 9) C(18 16 8)
NOT VALID- P(17 16 9) C(IS 15 8)
NOT VALID- P(1 7 16 9) C(17 15 8)
NOT VA LID- P(1 7 16 9) 0(16 15 8)
NOT VALID- P(17 16 9) C(16 16 8)
NOT VALID- P(17 16 9) 0(16 17 8)
NOT VALID- P(17 16 9) C(17 17 9)
NOT VALID- P(17 16 9) 0(18 17 9)
NOT VALID- P(17 16 9) C(18 16 9)
NOT VALID- P(17 16 9) 0(18 15 9)
INSERTED- P(1 7 15 9) L( 3) D( 0 -1 0) 0(4464.7573) G(1007.1068) R(1288.5262) D( 2414.2136) B0(5690.2905)
NOT VALID- P(17 16 9) 0(16 15 9)
NOT VALID- P(17 16 9) 0(16 16 9)
NOT VALID- P(17 16 9) C(16 17 9)
NOT VALID- P(17 16 9) 0(17 17 10)
NOT VALID- P(1 7 16 9) C(18 17 10)
NOT VALID- P(17 16 9) 0(18 16 10)
INSERTED- P(18 15 10) L( 3) D( 1 -1 1) C(5261.2490) G(1399.9271) R(1 749.1946) D( 3146.2644) BC(5690.2905)
INSERTED- P(17 15 10) L( 3) D( 0-1 1) 0(4735.5898) G(1131.3710) R(1470.7822) D( 2828.4272) BC(5690.2905)
INSERTED- P(16 15 10) L( 3) D(-1 -1 1) C(4808.3833) G(1573.1322) R(1867.7587) D( 3146.2644) B0(5690.2905)
NOT VALID- P(17 16 9) C(16 16 10)
NOT VALID- P(17 16 9) 0(16 17 10)

D.2.1.2 iPSC/860 (Mission AFIT-OA).

PARALLEL MISSION ROUTING PROBLEM

A* USING CENTRALIZED LIST

Enter name of file containing the terrain data: terrainA
Enter name of file containing the radar data : radarA
Enter name of file containing the Air Tasking Order (ATO): AFIT-OA
Found an initial route with a cost of 5690.290039

REMOVED- P(17 17 8) L( 1) D( 0 0 0) C( 0.0000) G( 0.0000) R( 0.0(100) D( 0.0000) 80(5690.2900)
INSERTED- P(17 18 7) L( 2) D( 0 1 -1) 0(4180.4175) G( 707.1068) R( 848.5281) D( 1414.2135) BC(5690.2900)
INSERTED- P(18 18 7) L( 2) D( 1 1 -1) 0(4134.7300) G( 519.6152) R( 762.1024) D( 1732.0508) BC(5690,2900)
INSERTED- P(18 17 7) L( 2) D( 1 0 .1) 0(3908.9822) G( 424.2641) R( 622.25401) D( 1414.2135) BC(5690.2900)
INSERTED- P(18 16 7) L( 2) D( 1 -1 -1) 0(3973.9595) G( 519.6152) R( 762.1024) D( 1732.0508) BC(56902900)
INSERTED- P(17 16 7) L( 2) D( 0 -1 -1) C(3798.2219) G( 707.1068) R( 848.5281) DC 1414.2135) 8015690.2900)
INSERTED- P(16 16 7) L( 2) D(-1 -1 -1) 0(4224.6904) G(12212.4355) R(1 316.3586) D( 1732.0508) BC(5690.2900)
INSERTED- P(16 17 7) L( 2) D(-1 0 -1) C(4684.2109) G(1 131.3708) R(1 187.9393) D( 1414.2135) BC(5690.2900)
INSERTED- P(16 18 7) L( 2) D(-1 1 -1) C(4925.3516) G(1212.4355) R(1316.3586) D( 1732.0508) BC(5690.2900)
INSERTED- P(17 18 8) L( 2) D( 0 1 0) C(3955.1392) G( 500.0000) R( 600.000(0) DJ( 1000.0000) BC(5690.2900)
INSERTED- P(18 18 8) L( 2) D( 1 1 0) 0(3968.6196) G( 424.2641) R( 622.254(0) D( 1414.2135) B0(5690.2900)
INSERTED- P(18 17 8) L( 2) D( 1 0 0.) C(3777.5442) G( 300.0000) R( 440.0000) DC 1000.0000) B0(5690.2900)
INSERTED- P(18 16 8) L( 2) D( 1 -1 0) C(3877.6450) G( 424.2641) R( 622.254(0) D( 1414.2135) 80(5690.2900)
INSERTED- P(17 16 8) L( 2) D( 0 -1 0) 0(3589.9668) G( 500.0000) R( 600.0000) DC 1000.0000) BC(5690.2900)
INSERTED- P(16 16 8) L( 2) D(-1 -1 0) C(4040.3633) G( 989.9495) R(1074,8022) DC 1414.2135) BC(5690.2900)
INSERTED- P(16 17 8) L( 2) D(.1 0 0) C(4393.5005) GC 800.0000) R( 840.000(0) D( 1000.0000) BC(5690.2900)
INSERTED- P(16 18 8) L( 2) D(-I 1 0) C(4718.3232) G( 989.9495) R(1074.b022) D)( 1414 2135) 80(5690,2900)
INSERTED- P(17 18 9) L( 2) D( 0 1 1)C(4212.4355) G( 707.1068) R( 848.5281) D( 1414.2135) 80(5690.2900)
INSERTED- P(18 18 9) L( 2) D(I 1 1 I)C(4357.3335) G( 519.6152) R( 762.1024) D( 17.32.0508) 80(5690.2900)
INSERTED- P(18 17 9) L( 2) D( 1 0 1) 0(3968.6196) G( 424.2641) R( 622.2540l) Dl 1414.2135) BC(5690 2900)
INSERTED- P(18 16 9) L( 2) D(I -1 1) C(4087.1873) G( 519.6152) R( 762.1024) D( 17320508) 80(5690 2900)
INSERTED- P(17 16 9) L( 2) D( 0 -1 1) C(3903.3296) G( 7(07.1068) R( 848.5281) DJ( 1414 2135) 80(5690.2900)
INSERTED- P(16 16 9) L( 2) I)(.I -1 1) C(4371.0771) G(1212,4355C RC1316.3566) D( 1732.0508) B0(5690 2900)
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INSERTED- P(16 17 9) L( 2) D(-1 0 1) C(4830.5972) G(1131.3708) R(1187.9393) D( 1414.2135) BC(5690.2900)
INSERTED- P(16 18 9) L( 2) D(-1 1 1) C(5015.9639) G(1212.4355) R(1316.3586) D( 1732.0508) BC(5690.2900)

REMOVED - P(17 16 8) L( 2) D( 0 -1 0) C(3589.9668)G( 500.0000) R( 600.0000) D( 1000.0000) BC(5690.2900)
NOT VALID- P(17 16 8) C(17 17 7)
NOT VALID- P(17 16 8) C(18 17 7)
NOT VALID- P(17 16 8) C(18 16 7)
INSERTED- P(18 15 7) L( 3) D( 1 -1 -1) C(4796.6821) G(1192.8203) R(1500.6664) D( 2732.0508) BC(5690.2900)
INSERTED- P(17 15 7) L( 3) D( 0 -1 -1) C(4290.5396) G( 924.2640) R(1222.2539) D( 2414.2134) BC(56902900)
INSERTED- P(16 15 7) L( 3) D(-1 -1 -1) C(4299.0342) G(1366.0254) R(1639.2305) D( 2732.0508) BC(5690.2900)
NOT VALID- P(17 16 8) C(16 16 7)
NOT VALID- P(17 16 8) C(16 17 7)
NOT VALID- P(17 16 8) C(17 17 8)
NOT VALID- P(17 16 8) C(18 17 8)
NOT VALID- P(17 16 8) C(18 16 8)
INSERTED- P(18 15 8) L( 3) D( 1 -1 0) C(4677.4321) G(1065.6854) R(1335.3911) D( 2414.2134) BC(5690.2900)
INSERTED- P(17 15 8) L( 3) D( 0-1 0) C(4149.6938) G( 800.0000) R(1040.0000) D( 2000.0000) BC(5690.2900)
INSERTED- P(16 15 8) L( 3) D(-1 -1 0) C(4165.5610) G(1207.1067) R(1448.5281) D( 2414.2134) BC(5690.2900)
NOT VALID- P(17 16 8) C(16 16 8)
NOT VALID-P(17 16 8) C(16 17 8)
NOT VALID-P(17 16 8) C(17 17 9)
NOT VALID- P(17 16 8) C(16 17 9)
NOT VALID- P(17 16 8) C(18 16 9)
INSERTED- P(18 15 9) L( 3) D( 1 -1 1) C(4916.0576) G(1192.8203) R(1500.6664) D( 2732.0508) BC(5690.2900)
INSERTED- P(17 15 9) L(3) D( 0-1 1) C(4398.4829) G( 924.2640) R(1222.2539) D( 2414.21341 BC(5690.2900)
INSERTED- P(16 15 9) L( 3) D(-1 -1 1) C(4445.4209) G(1366.0254) R(1639.2305) D( 2732.0508) BC(5690.2900)
NOT VALID- P(17 16 8) C(16 16 9)
NOT VALID- P(17 16 8) C(16 17 9)

REMOVED - P(18 17 8) L( 2) D( 1 0 0) C(3777.5442) G( 300.0000) R( 440.0000) D( 1000.0000) BC(5690.2900)
NOT VALID- P(18 17 8) C(18 18 7)
INSERTED- P(19 18 7) L( 3) D( 1 1 -1) C(4204.6396) G( 646.4102) R(1063.5383) D( 2732.0508) BC(5690.2900)
INSERTED- P(19 17 7) L( 3) D( 1 0 -1) C(4307.1060) G( 582.8427) R( 949.1169) D( 2414.2134) BC(5690.2900)
INSERTED- P(19 16 7) L( 3) D( 1 -1 -1) C(4706.8594) G( 819.6152) R(1202.1023) D( 2732.0508) BC(5690.2900)
NOT VALID- P(18 17 8) C(18 16 7)
NOT VALID- P(18 17 8) C(17 16 7)
NOT VALID- P(18 17 8) C(17 17 7)
NOT VALID- P(18 17 8) C(17 18 7)
NOT VALID- P(18 17 8) C(18 18 8)
INSERTED- P(19 18 8) L( 3) D( 1 1 0) C(4080.8318) G( 582.8427) R( 949.1169) D( 2414.2134) BC(5690.2900)
INSERTED- P(19 17 8) L( 3) D( 1 0 0) C(4396.2583) G( 500.0000) R( 800.0000) D( 2000.0000) BC(5690.2900)
INSERTED- P(19 16 8) L( 3) D( 1 -1 0) C(4605.5835) G( 724.2640) R(1062.2539) D( 2414.2134) BC(5690.2900)
NOT VALID- P(18 17 8) C(18 16 8)
NOT VALID- P(18 17 8) C(17 16 8)
NOT VALID- P(18 17 8) C(17 17 8)
NOT VALID- P(18 17 8) C(17 18 8)
NOT VALID- P(18 17 8) C(18 18 9)
INSERTED- P(19 18 9) L( 3) D( 1 1 1) C(4418.6919) G( 646.4102) R(1063.5383) D( 2732.0508) BC(56.03.2900)
INSERTED- P(19 17 9) L( 3) D( 1 0 1) C(4452.6396) G( 582.8427) R( 949.1169) D( 2414.2134) BC(5690.2900)
INSERTED- P(19 16 9) L(3) D( 1 -1 1) C(4807.7012) G( 819.6152) R(1202.1023) D( 2732.0508) BC(5690.2900)
NOT VALID- P(18 17 8) C(18 16 9)
NOT VALID- P(18 17 8) C(17 16 9)
NOT VALID- P(18 17 8) C(17 17 9)
NOT VALID- P(18 17 8) C(17 18 9)

REMOVED - P(17 16 7) L( 2) D( 0 -1 -1) C(3798.2219) G( 707.1068) R( 848.5281) D( 1414.2135) BC(5690.2900)
NOT VALID- P(17 16 7) C(17 17 6)
NOT VALID-P(17 16 7) C(18 17 6)
INSERTED- P(18 16 6) L( 3) D( 1 0 -1) C(4885,4834) G(1131.3708) R(1470.7820) D( 2828.4270) BC(5690.2900)
INSERTED- P(18 15 6) L( 3) D( 1 -1 -1) C(5029.4966) G(1399.9270) R(1749.1945) D( 3146.2642) BC(5690.2900)
INSERTED- P(17 15 6) L( 3) D( 0-1 -1) C(4524.9956) G(1131.3708) R(1470.7820) D( 2828.4270) BC(5690.2900)
INSERTED- P(16 15 6) L( 3) D(-1 -1 -1) C(4527.7588) G(1573.1321) R(1887.7585) D( 3146.2642) BC(5690.2900)
INSERTED- P(16 16 6) L( 3) D(-1 0 -1) C(4811.8584) G(1697.0562) R(1923.3303) D( 2828.4270) BC(5690 2900)
NOT VALID- P(17 16 7) C(16 17 6)
NOT VALID- P(17 16 7) C(17 17 7)
NOT VALID- P(17 16 7) C(18 17 7)
NOT VALID- P(17 16 7) C(18 16 7)
INSERTED- P(18 15 7) L( 3) D( 1 -1 0) C(4879.9351) G(1272.7922) R(1583,9192) D( 2828.4270) BC(5690.2900)
INSERTED- P(17 15 7) L( 3) D( 0 -1 0) C(4356.8135) G(1007.1068) R(1288.5281) D( 2414.2134) BC(5690.2900)
INSERTED- P(16 15 7) L( 3) D(-1 -1 0) C(4356.8604) G(1414.2135) R(1697.0562) D( 2828.4270) BC(5690.2900)
NOT VALID- P(17 16 7) C(16 16 7)
NOT VALID- P(17 16 7) C(16 17 7)
NOT VALID- P(17 16 7) C(17 17 8)
NOT VALID- P(17 16 7) C(18 17 8)
NOT VALID- P(17 16 7) C(18 16 8)
NOT VALID- P(17 16 7) C(18 15 8)
NOT VALID-P(1716 7) C(1715 8)
NOT VALID- P(17 16 7) C(16 15 8)
NOT VALID- P(17 16 7) C(16 16 8)
NOT VALID-P(1716 7) C(16 17 8)
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REMOVED - P(18 16 8) L( 2) D( 1 -1 0) C(3877.6450) G( 424,2641) R( 622.2540) D( 1414.2135) BC(56902900)
NOT VALID- P(18 16 8) C(18 17 7)
NOT VALID- P(18 16 8) C(19 17 7)
INSERTED- P(19 16 7) L( 3) D( 1 0-1) C(4659.2095) G( 848.5281) R(1244.5079) D( 2828.4270) BC(5690 2900)
INSERTED- P(19 15 7) L( 3) D( 1 -1 -1) C(5292.8438) G(1290.2894) R)1661.4844) D( 3146.2642) BC)5690.2900)
INSERTED- P(18 15 7) L( 3) D( 0 -1 -1) C(4460.5239) G( 989.9495) R(1357.6450)D( 2828.4270) BCt5690.2900)
NOT VALID- P(18 16 8) C(17 15 7)
NOT VALID-P(18 16 8) C(1716 7)
NOT VALID-P(18 16 8) C(17 17 7)
NOT VALID-P(18 16 8) C(18 17 8)
NOT VALID- P(18 16 8) C(19 17 8)
INSERTED- P(19 16 8) L(3) D( 1 0 0) C(4768.6616) G( 724.2640) R(1062.2539) D( 2414.2134) BC(5690.2900)
INSERTED- P(19 15 8) L( 3) D( 1-1 0) C(5142.4141) G(1131.3708) R(1470.7620) D( 2828.4270) BC(5690.2900)
INSERTED- P(18 15 8) L(3) D( 0 -1 0) C(4390.5278) G( 824.2640) R(I 142.2539) D( 2414.2134) BC(5690.2900)
NOT VALID- P(18 16 8) C(17 15 8)
NOT VALID-P(18 16 8) C(17 16 8)
NOT VALID- P(18 16 8) C(17 17 8)
NOT VALID- P(18 16 8) C(18 17 9)
NOT VALID- P(18 16 8) C(19 17 9)
INSERTED- P(19 16 9) L( 3) D( 1 0 1) C(4796.4678) G( 848.5281) R(1244.5079) D( 2828.4270) BC(5690.2900)
INSERTED- P(19 15 9) L( 3) D( 1 -1 1) C(5397.9512) G(1290.2894) R(1661.4844) D( 3146.2642) BC(5690.2900)
INSERTED- P(18 15 9) L( 3) D( 0 -1 1) C(4684.5239) G( 989.9495) R(1357.6450) D( 2828.4270) BC(5690.2900)
NOT VALID- P(18 16 8) C(17 15 9)
NOT VALID- P(18 16 8) C(17 16 9)
NOT VALID- P(18 16 8) C(17 17 9)

D.2.2 Accuracy of Angle Calculations. For each test case the parent location used is (17,

16, 7) and the directional vector reaching the parent is < 0 - 1 - I >. These values are selected

because on the iPSC/2 four children from this state were accepted as valid next locations while on

the iPSC/860 those same four children plus an additional four other children were accepted. Thus

for this state, the iPSC/860 accepted twice the number of children resulting in twice the number

of possible routes being explored. This state allows a direct comparison of the angle calculations,

therefore providing insight into the differences between the two executable codes. The following

abbreviations are used in the output:

C - Child coordinates
ND - Directional vector from parent to child
NT - x2 + y2 + Z2 of ND
OT - x2 + y2 + z2 of old direction vector

Num - Numerator
Den - Denominator
Fract - Fraction sent to arc cosine function
MO - Magnitude of old directional vector
MN - Magnitude of old directional vector
A - Calculated angle
TRUE - Child is valid
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D.2.2.1 iPSC/2.

Starting testing

0(1 717 6) ND( 0 1 -1) NT(2) OT(2) Num( 0.0) Den(2.0000) FI-act( 0.0000) MO(l .414) MN( 1.424) A( !)0.0000000000000000)
C(18 17,6) ND( 1 1 -1) NT(3) OT(2) Num( 0.0) Den(2.4495) F~ract( 0.0000) MO(1.414) MN(1.732) A( 90.00000000000000010)
C(18 16 6) ND( 1 0 -1) NT(2) OT(2) Num( 1.0) Den(2.0000) Fract( 0,5000) MO(1.414) MN(1.414) A( 60.0000000000000070)
C(18 15 6) ND( 1 -1 -1) NT(3) OT(2) Num( 2.0) Den(2.4495) Fract( 0.8165) MO( 1.414) MN(1 .732) A( 35.2643896827546680) TRUE
C(17 1. 6) ND( 0 -1 -1) NT(2) OT(2) Num( 2.0) Den(2.0000) Fract( 1.0000) MQ(1.414) MN(l.414) A( 0.0000012074182697) TRUE
C(16 15 6) ND(-l 1.-1) NT(3) OT(2) Num( 2.0) Den(2,4495) Fract( 0,8165) MO(1.414) MN)1.732) A( 35.2643896827546680) TRUE
0(1 6 1 G66) ND(-1 0-1) NT(2) OT(2) Num( 1.0) Den(2.0000) Fract( 0.5000) MIO)1.414) MN( 1.414) A( 60.0000000000000070)
0(1 6 17 6) ND(-l1 1-1) NT(3) OT(2) Num( 0.0) Den(2.4495) Fract( 0.0000) MO(1.414) MN(1.732) A( 90.0000000000000000)
C(17 17 7) ND( 0 1 0) NT(1) OT(2) Num(.1 .0) Den( 1.4142) Fract(.0.7071) MO(1 .414) MN( 1.000) A(135.0000000000000000)
C(18 17 7) ND( 1 1 0) NT(2) OT(2) Nurn(-1 .0) Den(2.0000) ftact(-0.5000) MO( 1.414) MN) 1.414) A(1 19.9999999999999600)
C(18 16 7) ND( 1 0 0) NT(1)OT(2) Num(0.0) Den(1.4i42)F'ract( 0.0000) MO(1.414) MN(1 000) A( 90.00000000000000001
C(18 15 7) ND( 1 -1 0) NT(2) OT(2) Num( 1.0) Den(2.0000) F~ract( 0,5000) MO( 1.414) MN(1.414) A( 60.0000000000000070)
C(1715 7) ND( 0-1 0) NT(1) OT(2) Num( 1.0) Den( 1.4142) Fract( 0.7071) MO(1 .414) MN(1 .000) A( 451.0000000000000070) TRUE
C(16 15 7) ND(-1 -1 0) NT(2) OT(2) Num( 1.0) Den(2.0000) F~ract( 0.5000) MO(1.414) MN(1.414) A( 60.0000000000000070)
0(16 16 7) ND(-1 0 0) NT(1) OT(2) Num( 0.0) Den(1.4142) Fract( 0.0000) MQ(1.414) MN(1.000) A( 90.0000000000000000)
C(16 17 7) ND(-1 1 0) NT(2) OT(2) Num(-1 .0) Den(2.0000) Fract(-0.5000) MO( 1.414) MN( 1.414) A( 119.9999999999999800)
C(1 7 17 8) ND( 0 1 1) NT(2) OT(12) Num(-2.0) Den(2.0000) F'ract(-1 .0000) MO( 1.414) MN) 1.414) A(1 79.9999987925817400)
C(18 17 8) ND( 1 1 1) NT(3) OT(2) Num(-2.0) Den(2.4495) Fract(-0.8165) MO(1.414) MN(1.732) A(144.7356103172453100)
C(18 16 8) ND( 1 0 1) NT(2) OT( 2) Num(-1 .0) Den(2.0000) Fract(-0.5000) MO(1 .414) MN( 1.414) A( 119.9999999999999800)
C(18 15 8) ND( 1 -1 1) NT(3) OT(2) Num( 0.0) Den(2.4495) Fract( 0.0000) MO(1.414) MN(1.732) A( 90.0000000000000000)
C(17 15 8) ND( 0-1 1) NT(2) OT(2) Nurn( 0.0) Den(2.0000) Fract( 0.0000) MO(1.414) MN(1.414) A( 90.00000000000000001)
C(16 15 8) ND(.1 -1 1) NT(3) OT(2) Num( 0.0) Den(2.4495) Fract( 0.0000) MO(1 .414) MN( 1.732) A( 90.0000000000000000)
C(16 16 8) ND(-1 0 1) NT(2) OT(2) Num(-1 .0) Den(2.0000) Fract(-0.5000) MO) 1.414) MN) 1.414) A) 119.9999999999999800)
0(16 17 8) ND(-1 1 1) NT(3) OT(2) Num(-2.0) Den(2.4495) Fract(-0.8165) MO(1 .414) MN( 1.732) A(144.7356103172453100)

D. 2.2.2 iPSC/860.

Starting testing

C(1 7 17 6) ND( 0 1 -1) NT(2) OT(2) Num( 0.0) Den(2.0000) Fract( 0.0000) MO(1.414) MN(1.414) A( 90.0000000000000000)
C(18 17 6) ND( 1 14-) NT(3) OT(2) Num( 0.0) Den(2.4495) F~ract( 0.0000) MO(1.414) MN(L.732) A( 90.0000000000000000)
0(18 16 6) ND( 1 0-1) NT(2) OT(2) Num( 1.0) Den(2.0000) Fract( 0.5000) MO(1.414) MN(1.414) A( 59.9999999999999850) TRUE
0(18 15 6) ND( 1 -1 -1) NT(3) OT(2) Num( 2.0) Den(2.4495) Fract( 0.8165) MO( 1.414) MN) 1.732) A( 35.2643896827546390) TRUE
0(1 715 6) ND( 0 -1 -1) NT(2) OT(2) Num( 2.0) Den( 2.0000) Fract) 1.0000) MO( 1.414) MN(1 .414) A) 0.0000000000000000) TRUE
C(16 15 6) ND(.1 -1 -1) NT(3) OT(2) Num( 2.0) Den(2.4495) Fract( 0.8165) MO( 1.414) MN) 1.732) A( 35.2643896827546390) TRUE
C(16 16 6) ND(-l 0-1) NT(2) OT(2) Num( 1.0) Den(2.0000) Fract( 0.5000) MO(1 .414) MN(1 .414) A( 59.9999999999999850) TRUE
C(16 17 6) ND(- 1 1.-1) NT(3) OT(2) Num( 0.0) Den(2.4495) Fract( 0.OuOO) MO(1.414) MN(1.732) A( 90.0000000000000000)
0(1 717 7) ND( 0 1 0) NT(1) OT(2) Num(-1 .0) Den( 1.4142) Ftact(-0.7071) MO(1 .414) MN( 1.000) A( 135.0000000000000000)
C(18 17 7) ND( 1 1 0) NT(2) OT(2) Num(-1 .0) Den(2.0000) Fract(.0.5000) MO( 1.414) MN( 1.414) A(120.0000000000000100)
0(1816 7) ND( 1 0 0) NT(1) OT(2) Num( 0.0) Den(1.4142) Fract( 0.0000) MO(1.414) MN(1.000) A( 90.0000000000000000)
0(1815 7) ND( 1 -1 0) NT(2) OT(2) Num( 1.0) Den(2.0000) Fract( 0.5000) MO(1.414) MN(1.414) A( 59.9999999999999850) TRUE
0(17 15 7) ND( 0 -1 0) NT(1) OT(2) Num( 1.0) Den(1.4142) Fract( 0.7071) MO(1.414) MN(I 000) A) 44.9999999999999920) TRUE
0(16 15 7) ND(-1 -1 0) NT(2) OT(2) Num( 1.0) Den(2.0000) Fract( 0.5000) MO(1.414) MN(1 .414) A) 59.9999999999999850) TRUE
0(16 16 7) ND(-1 0 0) NT(1) OT(2) Num( 0.0) Den(1.4142) Fract( 0.0000) MO(1.414) MN(1.000) A( 90.0000000000000000)
C(16177) ND(-1 1 0) NT(2) OT(2) Num(- .0) Den(2.0000) fract(-0.5000) MO(1 .414) MN) 1.414) A)] 20.00000000000001 00)
0(17 17 8) ND( 0 1 1) NT(2) OT(2) Num(-2.0) Den(2.0000) Fract(-1.0000) MO)1,414) MN(1.414) A(180.0000000000000000)
0(18 17 8) ND) 1 1 1) NT(3) OT(2) Num(-2.0) Den(2.4495) Fract(.0.8165) MO(1.414 )MNN(1.732) A(144.735610317245370o)
0(18 16 8) ND( 1 0 1) NT(2) OT(2) Num(-1.0) Den(2.0000) Fract(-0.5000) MO(1.414) MN(1.414) A(120.0000000000000100)
0(1 815 8) ND( 1 -1 1) NT(3) OT(2) Num) 0.0) Den(2.4495) Fract) 0-0000) MO(1 .414) MN( 1.732) A( 90.0000000000000000)
0(17 15 8) ND( 0 -1 1) NT(2) OT(2) Num) 0.0) Den(2.0000) Fract( 0.0000) MO(1.414) MN(1.414) A( 90.0000000000000000)
0(16 15 8) ND(-1 -1 1) NT(3) OT(2) Num) 0.0) Den(2.4495) Fract( 0.0000) MO(1.414) MNIN1.732) A( 90.0000000000000000)
0(1 6 16 8) ND(-1 0 1) NT(2) OT(2) Num(-1 .0) Den(2.0000) Fract(.0.5000) MO)1 .414) MN( 1.414) A(] 20.0000000000000100)
0(1 617 8) ND(-1 1 1) NT(3) OT(2) Num(-2.0) Den(2.4495) Fract(-0.81 65) MO) 1.414) MN(1.732) A(144.7356103172453700)
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Table D.1. All Possible Angles
ab, A • B albi + a 2 b2 + a3b3  a5b1+a+aab: Angle

0 0 1 1 1 1 0

0 1 1 1 2 2 ERR

1 1 1 1 3 3 ERR

0 0 -1 1 -1 -1 180
0 -1 -1 1 -2 -2 ERR

-1 -1 -1 1 -3 -3 ERR

0 1 -1 1 0 0 90

1 1 -1 1 1 1 0
1 -1 -1 1 -1 -1 180

0 0 1 /2 1 0.707107 45
0 1 1 v/2 2 1.414214 ERR

1 1 1 v/i 3 2.121320 ERR

0 0 -1 /2 -1 -0.707107 135

0 -1 -1 v'i -2 -1.414214 ERR

-1 -1 -1 v/2 -3 -2.121320 ERR

0 1 -1 Vf2 0 0 90

1 1 -1 V/ 1 0.707107 45

1 -1 -1 /2 -1 -0.707107 135

0 0 1 V3 1 0.577350 54.73561
0 1 1 V/ 2 1.154701 ERR
1 1 1 ,/3 3 1.732051 ERR

0 0 -1 V/3 -1 -0.577350 125.26439

0 -1 -1 V/3 -2 -1.154701 ERR

-1 -1 -i \3 -3 -1.732051 ERR
0 1 -1 ,43 0 0 90

1 1 -1 /i 1 0.577350 54.73561

1 -1 -1 V/ -1 -0.577350 125.26439

0 0 1 -i 6 1 0.408248 65.90518

0 1 1 V/6 2 0.816497 35.26439

1 1 1 V16 3 1.224745 ERR
0 0 -1 v\ -1 -0.408248 114.09484

0 -1 -1 \/6 -2 -0.816497 144.73561

-1 -1 -1 v1
6 -3 -1.224745 ERR

0 1 -1 \/r6 0 0 90
1 1 -1 V/6 1 0.408248 65.90518
1 -1 1 r -1 -0.408248 114.09484

0 0 1 2 1 0.5 60
0 1 1 2 2 1 0
1 1 1 2 3 1.5 ERR
0 0 -1 2 -1 -0.5 120
0 -1 -1 2 -2 -1 180

-1 -1 -1 2 -3 -1.5 ERR

0 1 -1 2 0 0 90

1 1 -1 2 1 0.5 60
1 -1 -1 2 -1 -0.5 120

0 0 1 3 1 0.333333 70.52878
0 1 1 3 2 0.666667 48.18969

1 1 1 3 3 1 0
0 0 -1 3 -1 -0.333333 109.47122
0 -1 -1 3 -2 -0.666667 131.81031

-1 -1 -1 3 -3 -1 180

0 1 -1 3 0 0 90
1 1 -1 3 1 0.333333 70.52878

1 -1 -1 3 -1 -0.333333 109.47122
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Pilots select routes based on factors such as threats, fuel, time on target, distance, and refueling points. This
is a time consuming task. This thesis presents the software engineering synthesis of a software tool, based on a
parallelized A* search algorithm, to select routes. For simplicity only threats and distance are used.
A centralized open list is used with one processor managing the list while thie other processors perform the node
expansions. This decomposition results in a dynamically load balanced system. A number of parameters are
changed to study their impact on the execution time. The use of a branch and bound technique and its iml a :t
on the execution time is studied. Other parameters examined are the size of the supercomputer and granularity
of the algorithm. It is important to match the software granularity to the architecture to ensure maximum
utilization of the supercomputer and minimize execution time. Tests were run on both an iPSC/2 and iPSC/860
to determine the effects of the architecture upon the execution tinw,. [i conjunction with execution time, the
efficient usage of the parallel computer was also examined.
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